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1. Introduction

The standard theoretical framework for computing rare radiative B decays is QCD factorization
(QCDF) [3]. QCDF is the statement that to leading power accuracy in the heavy quark limit, the
matrix element of the effective weak Hamiltonian operators factorizes into perturbatively calculable
kernels and non-perturbative but universal quantities namely the B→V transition form factor, the
meson decay constants and their leading twist DAs. In a standard notation [3, 4], we have

〈V (P,eT )γ(q,ε)|Qi|B̄〉= [FB→V T I
i +

∫ 1

0
dζ dz ΦB(ζ )T II

i (ζ ,z)φ⊥V (z)] · ε +O(ΛQCD/mb) . (1.1)

The second term is a convolution of the perturbatively computable kernels T II
i with the non-

perturbative leading twist DA of the B meson, ΦB(ζ ), and that of the vector meson, φ⊥V (z).
The predictive power of QCDF is limited by two sources of uncertainty : firstly by the uncer-

tainties associated with all non-perturbative quantities which we refer to as hadronic uncertainties
and secondly by power corrections to the leading power contribution given by equation (1.1). Tra-
ditionally, the vector meson DAs are obtained using QCD Sum Rules which predict their moments
at a starting low scale of 1 GeV. The DAs are then reconstructed as a truncated Gegenbauer ex-
pansions and can then be evolved perturbatively to any desired higher scale. The computation
of power corrections with Sum Rules DAs can be problematic because they involve convolution
integrals that do not always converge. We refer to this as the end-point divergence problem [5].

In this contribution, we report that to leading power accuracy, predictions generated with alter-
native AdS/QCD DAs agree with those predicted with standard Sum Rules DAs [6] but that beyond
leading power accuracy, AdS/QCD DAs offer the advantage of avoiding the end-point divergence
problem. Furthermore, the AdS/QCD predictions agree with experiment.

2. Holographic AdS/QCD wavefunctions for vector mesons

The AdS/QCD DAs of a transversely polarised vector meson are related its AdS/QCD light-
front wavefunction. In a standard notation, we have[1, 2]

φ
⊥
V (z,µ) =

Nc

π f⊥V

∫
drµJ1(µr)[mq− z(mq−mq̄)]

φ T
V (r,z)

z(1− z)
, (2.1)

g⊥(v)V (z,µ) =
Nc

2π fV MV

∫
drµJ1(µr)

[
(mq− z(mq−mq̄))

2− (z2 +(1− z)2)∇2
r
] φ T

V (r,z)
z2(1− z)2 (2.2)

and

dg⊥(a)V
dz

(z,µ) =

√
2Nc

π f̃V MV

∫
drµJ1(µr)[(1−2z)(m2

q−∇
2
r )+ z2(mq +mq̄)(mq−mq̄)]

φ T
V (r,z)

z2(1− z)2

(2.3)
where f̃V = fV − f⊥V (mq +mq̄)/MV with fV and f⊥V being the decay constants of the meson. The
wavefunction φ T

V (r,z) is obtained by solving the holographic AdS/QCD Schroedinger equation of
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Figure 1: The twist-2 (left) DA, the vector twist-3 (middle) DA and the axial vector twist-3 (right) DA for
for the transversely polarised vector meson. Solid Red: K∗, Dashed Black: ρ , Dotted Blue: Asymptotic.

Brodsky and de Teramond [7].1 We find that these AdS/QCD DAs hardly depend on the renormal-
ization scale µ for µ ≥ 1 GeV. They should therefore be viewed as parametrizations of the DAs
at a low scale µ ∼ 1 GeV. In figure 1, we compare the twist-2 DA and twist-3 vector DA of the
transversely polarised vector meson to their respective asymptotic forms (µ → ∞).

3. Branching ratio for B̄◦→ ρ◦γ

At leading power accuracy and next-to-leading accuracy in the strong coupling, the branching
ratio for B̄◦→ ρ◦γ depends on two integrals involving the twist-2 DA namely

I tw2
1 (sp,µh) =

∫ 1

0
dz h(sp, z̄)φ⊥ρ (z,µh) (3.1)

and

I tw2
2 (µh) =

∫ 1

0
dz

φ⊥ρ (z,µh)

z
(3.2)

where h(sp, z̄)2 is a hard scattering kernel and the hadronic scale µh =
√

ΛQCDmb ≈ 2 GeV. Beyond
leading power accuracy, we compute the contributions from four annihilation diagrams[1]. The
branching ratio then also depends on the twist-3 DA via two convolution integrals:

I tw3
1 (µ) =

∫ 1

0
dz

g⊥(v)ρ (z,µ)
zM2

B + zz̄M2
ρ −m2

q
(3.3)

and

I tw3
2 (µ) =

∫ 1

0
dz

zg⊥(v)ρ (z,µ)
zM2

B + zz̄M2
ρ −m2

q
. (3.4)

In table 1, we show the values of the above integrals obtained when using either Sum Rules or
AdS/QCD DAs. As can be seen, the AdS/QCD twist-3 avoids the divergence encountered with the
corresponding Sum Rules DA.

The corresponding results for the branching ratio of the decay B̄◦→ ρ◦γ are shown in table 2.
As can be seen, the power corrections to the branching ratio of the decay B̄◦→ ρ◦γ are numerically

1The resulting holographic wavefunction was recently used to generate successful predictions for the cross-sections
of diffractive ρ production [8].

2sp = (mp/mb)
2 where p = u,c.
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Integral SR AdS/QCD
I tw2
1 (sc,µ) 1.902+2.620i 1.590+2.329i

I tw2
1 (su,µ) −6.561+0.030i −8.866+0.027i
I tw2
1 (0,µ) −6.660 −8.989

I tw2
2 3.330 4.495

I tw3
1 (µ) ∞ 0.237

I tw3
2 (µ) ∞ 0.036

Table 1: AdS/QCD predictions at µ ∼ 1 GeV and SR predictions at a scale µ = 2 GeV for the two integrals
contributing to the branching ratio of the decay B̄◦→ ρ◦γ .

small so the end-point divergences arising from power corrections have no practical consequence
when computing the branching ratio. The main source of uncertainty when predicting the branching
ratio are therefore the hadronic uncertainties.

Branching ratio (×10−7) for B̄◦→ ρ◦γ

DA Accuracy SR AdS/QCD PDG Belle BaBar
tw2+ tw3 Lead.(α1

s )+Anni.[α0
s ,(1/mb)

2] 7.67 8.6±1.5 7.8±1.7
1.6±0.9

1.0 9.7±2.4
2.2±0.6

0.6
tw2 Lead.(α1

s )+Anni.[α0
s ,(1/mb)] 7.86 7.65

Table 2: Sum Rules and AdS/QCD predictions for the branching ratio (×10−7) of B̄◦ → ρ◦γ using
AdS/QCD or Sum Rules compared to the measurements from Belle [9], BaBar [10] and the average value
from PDG [11].

4. The isospin asymmetry in B→ K∗γ

Being given in terms of ratios of branching ratios, the isospin asymmetry is less sensitive to
the hadronic uncertainties. However, in the decay B→ K∗γ , the isospin asymmetry is a power
correction, i.e. it vanishes to leading power accuracy. Therefore, it is important to address the
end-point divergence problem when computing this asymmetry. The isospin asymmetry depends
on four convolution integrals namely[12]

F⊥(µh) =
∫ 1

0
dz

φ⊥K∗(z,µh)

3(1− z)
(4.1)

G⊥(sc,µh) =
∫ 1

0
dz

φ⊥K∗(z,µh)

3(1− z)
G(sc, z̄) (4.2)

X⊥(µh) =
∫ 1

0
dz φ

⊥
K∗(z,µh)

(
1+ z̄
3z̄2

)
(4.3)

and

H⊥(sc,µh) =
∫ 1

0
dz

(
g⊥(v)K∗ (z,µh)−

1
4

dg⊥(a)K∗

dz
(z,µh)

)
G(sc, z̄) (4.4)
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where G(sc, z̄) is the penguin function [12] with z̄ = 1− z. The first three integrals F⊥, G⊥ and X⊥
depend on the twist-2 DA while H⊥ depends on the twist-3 DAs. As can be seen in table 3, the

Integral SR AdS/QCD
X⊥ ∞ 26.9
F⊥ 1.14 1.38
G⊥ 2.55+0.43i 2.89+0.30i
H⊥ 2.48+0.50i 2.12+0.21i

Table 3: Predictions for the four convolution integrals contributing to the isospin asymmetry in the decay
B→ K∗γ using Sum Rules DAs at a scale µ = 2 GeV and the AdS/QCD DAs at a scale µ ∼ 1 GeV.

twist-2 AdS/QCD DA avoids the divergence encountered with the corresponding Sum Rules DA.
With the AdS/QCD DAs, we predict an isospin asymmetry of 3.3% in agreement with the most
recent average measured value of (5.2±2.6)% quoted by the Particle Data Group.
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