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Universality of TMD distribution functions
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We introduce transverse momentum dependent parton distribution functions (TMDs) for gluons

with definite rank. The rank refers to the azimuthal dependence corresponding to the tensorial

structure in transverse momenta multiplying universal functions only depending onx andp2
T . In

this way only a finite number of functions of definite rank remains for a target with the maximal

rank depending on its spin. Gauge links, required for color gauge invariance, enter in the explicit

description of the matrix elements corresponding to these TMDs and account for their process

dependence. In this way a general gauge link dependent function is expressed in the universal set,

where all process (i.e. gauge link) dependence is isolated in gluonic pole factors multiplying the

universal TMDs of definite rank.
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1. Introduction

We start from the gluon distribution function, which can be written in the form of a matrix
element as [1, 2, 3]

Γ[U,U ′]µν(x, pT ;n) =
∫

d ξ ·Pd2ξT

(2π)3 eip·ξ 〈P,S|Fnµ(0)U[0,ξ ] F
nν(ξ )U ′

[ξ ,0] |P,S〉

∣∣∣∣
LF
. (1.1)

The gauge linksU[0,ξ ] andU ′
[ξ ,0], which are path ordered exponentials, are needed to make the

correlator gauge invariant. Depending on the process underconsideration different gauge links will
appear. A number of gauge link structures exist, denoted as[U,U ′], connecting the positions 0 and
ξ in different ways. As basic building blocks we use the staplelinks U [±]

[0,ξ ] =U [n]
[0,±∞]U

T
[0T ,ξT ]

U [n]
[±∞,ξ ].

The simplest combinations allowed for[U,U ′] are[+,+†], [−,−†], [+,−†] and[−,+†], which are
illustrated in Fig. 1. More complicated possibilities, e.g. with additional (traced) Wilson loops of
the formU [�] = U [+]

[0,ξ ]U
[−]
[ξ ,0] = U [+]

[0,ξ ]U
[−]†
[0,ξ ] or U [�]† = U [−]

[0,ξ ]U
[+]
[ξ ,0] = U [−]

[0,ξ ]U
[+]†
[0,ξ ] are allowed as well.

A list with all type of contributions can be found in Ref. [4].Since the above correlator cannot be
calculated from first principles, an expansion in terms of TMD PDFs is used, which at the level of
leading twist contributions is given by [1, 5]

2xΓµν [U ](x,pT ) = −gµν
T f g[U ]

1 (x,p2
T )+gµν

T
ε pT ST

T

M
f⊥g[U ]
1T (x,p2

T )

+iε µν
T gg[U ]

1s (x,pT)+

(
pµ

T pν
T

M2 −gµν
T

p2
T

2M2

)
h⊥g[U ]

1 (x,p2
T )

−
ε pT{µ

T pν}
T

2M2 h⊥g[U ]
1s (x,pT )−

ε pT {µ
T Sν}

T +εST {µ
T pν}

T

4M
hg[U ]

1T (x,p2
T). (1.2)

We have used thatSµ = SLPµ +Sµ
T +M2SLnµ . Forgg[U ]

1s andh⊥g[U ]
1s the shorthand notation

gg[U ]
1s (x, pT ) = SLgg[U ]

1L (x, p2
T )−

pT ·ST

M
gg[U ]

1T (x, p2
T ) (1.3)

is used. The gauge link dependence on the rhs of Eq. 1.2 is hidden in the TMDs, as a result of
which the TMDs themselves are potentially process dependent. Note that f⊥g

1T , hg
1T , h⊥g

1L andh⊥g
1T

are naive T-odd.

(a) (b)

(c) (d)

Figure 1: The gauge link structures (a)[+,+†], (b) [−,−†], (c) [+,−†] and (d)[−,+†].
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2. Formalism

The universality breaking of the TMDs is troublesome at least, due to its implications that it
is no longer possible to use TMDs measured in one process for describing another process. In
order to save some predictability, first of all it has to be decided how to define the TMDs and what
mechanism is used for identifying them from a theoretical point of view. For this, we use transverse
moments, defined as

Γα1...αn[U ]
∂ ...∂ (x)≡

∫
d2pT pα1

T . . . pαn
T Γ[U ](x, pT ), (2.1)

which are weightings with transverse momentapT . Since these transverse momenta become deriva-
tives in coordinate space, they are sensitive to all objectsthat depend on the transverse coordinate
ξT , including gauge links [6, 7]. As an example, we consider theweighting with one factor ofpT

and refer to Ref. [4] for the details regarding higher transverse weightings.
For single transverse weighting of the matrix element in Eq.1.1 we end up with the result [3, 4]

Γα [U ]
∂ (x)≡

∫
d2pT pα

T Γ[U ](x, pT ) = Γ̃α
∂ (x)+C[U ]

G,1 Γα
G,1(x)+C[U ]

G,2Γα
G,2(x). (2.2)

In this, the indices∂ andG in the correlators indicate the operator structure of the partonic operators
that appear due to the weighting. The correlators in Eq. 2.2 have as basis

Γµν ,α [U ]
D (x,x− x1) =

∫
d ξ ·P
2π

d η ·P
2π

eix1(η ·P)ei(x−x1)(ξ ·P)

×Tr〈P,S|Fnµ(0)
[
U [n]
[0,η ]iD

α
T (η)U [n]

[η ,0],U
[n]
[0,ξ ]F

nν(ξ )U [n]
[ξ ,0]

]
|P,S〉

∣∣∣
LC
, (2.3)

Γµν ,α [U ]
F,1 (x,x− x1) =

∫
d ξ ·P
2π

d η ·P
2π

eix1(η ·P)ei(x−x1)(ξ ·P)

×Tr〈P,S|Fnµ(0)
[
U [n]
[0,η ]

Fnα(η)U [n]
[η ,0],U

[n]
[0,ξ ]F

nν(ξ )U [n]
[ξ ,0]

]
|P,S〉

∣∣∣
LC
, (2.4)

see Ref. [4] for more details. Another correlator,Γµν ,α [U ]
F,2 (x,x−x1), is given by a similar expression

asΓµν ,α [U ]
F,1 (x,x− x1) in Eq. 2.4, with the commutator of the partonic gluon fields replaced by an

anticommutator. The correlators as they appear in Eq. 2.2 are then given by

Γµν ,α
D (x) =

∫
dx1 Γµν ,α

D (x,x− x1), (2.5)

Γµν ,α
A (x) =

∫
dx1 PV

i
x1

Γµν ,α
F,1 (x,x− x1), (2.6)

Γ̃µν ,α
∂ (x) ≡ Γµν ,α

D (x)−Γµν ,α
A (x), (2.7)

Γµν ,α
G,c (x) = Γµν ,α

F,c (x,x). (2.8)

In our notation, the correlator with index∂ corresponds to a operator structure containing a com-
mutator of the partial derivative operator combinationi∂T = iDT −AT with the gluon fieldF(ξ ).
The correlators with the indexG are gluonic pole contributions. These gluonic pole correlators are
multiparton correlators with zero momentum gluons [8, 9, 10, 11, 12, 13] and are multiplied with
calculable gluonic pole factors, which contain all the process dependence.

Furthermore, the indexc indicates the color structure of the operators in the correlator. Since
the gluonic poles are combinations of gluon fields, depending on the gauge link structure they can
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occur with plus or minus signs, giving commutators and anticommutators of gluon fields. This
implies that the gluonic pole can appear as a commutator (c = 1) or anticommutator (c = 2) with
the fieldF(ξ ). Although this was already shown in e.g. Ref. [3] for the single weighted case, we
have generalized it to higher weightings, where more color structures are possible.

Transverse moments can be used for the correlator in terms ofTMDs as well, where we define

f g(m)
...

(x, p2
T ) =

(
−p2

T

2M2

)m

f g
...

(x, p2
T ). (2.9)

Performing transverse weightings both at the level of matrix elements and for the TMDs allows for
matching TMDs with matrix elements, by looking at the behavior under time reversal symmetry
and the rank of those objects.

As can be seen from Eq. 1.2, TMDs with no prefactors ofpT survive direct integration over
pT . For TMDs with a prefactor ofpα

T one has to use a single transverse weighting, for TMDs with
a prefactor ofpα

T pβ
T one has to use a double transverse weighting to extract it, etc. The number of

pT ’s needed for the extraction is called the rank of the TMD and is equal to the number of partonic
operators in the matrix elements described before. By usingthe rank and the behavior under time
reversal symmetry one can identify which matrix elements and TMDs correspond to each other.
E.g. the correlator̃Γα

∂ (x) corresponds togg
1T , since they are both rank 1 and T-even.

3. Defining gluon TMDs

The procedure of taking transverse moments can be generalized up to all orders, by including
operators up to rank 3, resulting in the expression

Γ[U ](x, pT ) = Γ(x, p2
T )+

pT i

M
Γ̃i

∂ (x, p2
T )+

pT i j

M2 Γ̃i j
∂∂ (x, p2

T )+
pT i jk

M3 Γ̃ i jk
∂∂∂ (x, p2

T )+ . . .

+ ∑
c

C[U ]
G,c


 pT i

M
Γi

G,c(x, p2
T )+

pT i j

M2 Γ̃ i j
{∂G},c(x, p2

T )+
pT i jk

M3 Γ̃ i jk
{∂∂G},c(x, p2

T )+ . . .




+ ∑
c

C[U ]
GG,c


 pT i j

M2 Γi j
GG,c(x, p2

T )+
pT i jk

M3 Γ̃ i jk
{∂GG},c(x, p2

T )+ . . .




+ ∑
c

C[U ]
GGG,c


 pT i jk

M3 Γi jk
GGG,c(x, p2

T )+ . . .


+ . . . , (3.1)

wherepT i j and pT i jk are symmetric and traceless tensors and the indexc labels the allowed color
structures. Using the behavior under time reversal symmetry and the rank of the operators, we can
invert Eq. 3.1 to find which matrix element corresponds to which TMD. Going one step further,
one could write down expressions for the TMDs in terms of all the allowed universal functions,

f⊥g[U ]
1T (x, p2

T ) =
2

∑
c=1

C[U ]
G,c f⊥g(Ac)

1T (x, p2
T ), (3.2)

hg[U ]
1T (x, p2

T ) =
2

∑
c=1

C[U ]
G,c hg(Ac)

1T (x, p2
T ), (3.3)

h⊥g[U ]
1L (x, p2

T ) =
2

∑
c=1

C[U ]
G,c h⊥g(Ac)

1L (x, p2
T ), (3.4)
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h⊥g[U ]
1 (x, p2

T ) = h⊥g(A)
1 (x, p2

T )+
4

∑
c=1

C[U ]
GG,c h⊥g(Bc)

1 (x, p2
T ), (3.5)

h⊥g[U ]
1T (x, p2

T ) =
2

∑
c=1

C[U ]
G,c h⊥g(Ac)

1T (x, p2
T )+

7

∑
c=1

C[U ]
GGG,c h⊥g(Bc)

1T (x, p2
T ). (3.6)

4. Conclusions

Our main result is that a potentially infinite number of TMDs can be described by a finite
number of universal functions. This is of profound importance, since it restores predictability. By
writing the (process dependent) TMDs as a sum over a finite number of universal TMDs, one can
use experimental results from a few processes to describe the TMDs in any other process. Another
important result is that also T-even TMDs can be process dependent, as is the case forh⊥g

1 . This
was shown before for the Pretzelocity (quark) TMD. A more extended account of these results can
be found in Ref. [4].
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