COMPASS results on transverse spin dependent azimuthal asymmetries in dihadron production in semi-inclusive deep-inelastic scattering

Christopher Braun∗

on behalf of the COMPASS collaboration
Physikalisches Institut IV of the University Erlangen-Nürnberg
Erwin-Rommel-Straße 1, 91058 Erlangen, Germany
E-mail: christopher.braun@cern.ch

The parton distribution function \(h_1^q \) of a transversely polarized quark \(q \) inside a transversely polarized nucleon is chiral odd and therefore not accessible in inclusive deep inelastic scattering. It can be observed however in semi-inclusive deep inelastic scattering (SIDIS) in combination with another chiral odd function like e.g. the dihadron interference fragmentation function (IFF) \(H_{\text{IFF}} \).

Using the polarized \(\mu^+ \) beam of CERN’s M2 beamline COMPASS has been investigating the spin structure of the nucleon using polarized solid-state targets since 2002. In this contribution an overview of COMPASS results for the azimuthal asymmetries in dihadron production is given. This includes the results of all hadron pairs \(h^+ h^- \) on a polarized deuteron target from the data taken in the years 2002 to 2004, as well as the first data set on a transversely polarized proton target taken in the year 2007 and a data set taken on the same target during the year 2010. The COMPASS spectrometer allows a good particle identification, which can be used to determine the composition of the \(h^+ h^- \) pairs in terms of pions and kaons. The results for the possible combinations \(\pi^+ \pi^- \), \(K^+ K^- \), \(\pi^+ K^- \) and \(K^+ \pi^- \), obtained very recently from the 2007 and the 2010 data, will be discussed in detail. Moreover the asymmetries for \(\pi^+ \pi^- \) pairs will be compared to the available model predictions and the corresponding results from HERMES.

XXI International Workshop on Deep-Inelastic Scattering and Related Subject -DIS2013,
22-26 April 2013
Marseilles, France

∗Speaker.
1. Framework & data selection

In the SIDIS process $\mu N \rightarrow \mu' h_1 h_2 X$ the incoming lepton is scattered off a transversely polarized quark inside the nucleon via the exchange of a virtual photon. The struck quark hadronizes into at least two unpolarized hadrons. For each oppositely charged hadron pair, the quantity R is defined, i.e. their normalized relative momentum. Figure 1 shows a simplified scheme of this process. In the SIDIS cross section the angle ϕ_R between the dihadron plane and the scattering plane and the azimuthal angle of the spin of the initial quark ϕ_S appear in an azimuthal modulation as a function of $\phi_{RS} = \phi_R + \phi_S - \pi$ [1, 2]. To select DIS events in general, kinematic cuts on the squared four momentum transfer $Q^2 > 1 \text{ (GeV/c)}^2$, the fractional energy transfer of the muon $0.1 < y < 0.9$ and the hadronic invariant mass $W > 5 \text{ GeV/c}^2$ were applied. The hadron pair sample requires more selection w.r.t. the single hadron asymmetries analysis [3], of which the requirement for a vertex with at least three outgoing tracks (scattered μ^+ and 2 hadrons) is the most fundamental one. All possible combinations of oppositely charged hadron pairs originating from the vertex are taken into account in the analysis. Each of these hadrons has to have a fractional energy $z > 0.1$ and a $x_F > 0.1$, to ensure that the hadron is not produced by target fragmentation. Exclusively produced ρ^0 mesons are rejected by a cut on the missing energy $E_{\text{miss}} > 3 \text{ GeV}$ of the pair system. This cut is shown in fig. 2 (left) and its consequence is clearly visible as a removal of the exclusivity peak around 1 in the distribution of $z_1 + z_2$ in fig. 2 (center). Finally a cut of $R_T > 0.07 \text{ GeV/c}$ ensures a well defined azimuthal angle ϕ_R. After all cuts the full statistics on the proton target consists of $45.5 \cdot 10^6 h^+ h^-$ pairs, of which $28.0 \cdot 10^6$ are identified as pion pairs. The deuteron sample consists of $5.8 \cdot 10^6 h^+ h^-$ pairs. In the distribution of the invariant mass M_{inv} of the pion pairs, shown in fig. 2 (right) the K^0, ρ^0 and f_1 resonances are clearly visible.
2. Deuteron data 2002-04

The dihadron asymmetry of all hadron pairs \(h^+ h^- \) for the data collected in 2002-04 on the deuteron target are consistently small and compatible with zero within the uncertainties (fig. 3 top). Furthermore no specific trend is visible for their dependence on \(x, z \) and \(M_{\text{inv}} \). This result is in line with the COMPASS measurement of the Collins asymmetry on the deuteron, and is interpreted as being due to an almost complete cancellation of the \(u \) and \(d \) quark transversity on the deuteron target [3], which is also predicted by the available models, see refs. [4, 5].

3. Proton data 2007 and 2010

The first measurement of the dihadron asymmetry of \(h^+ h^- \) pairs on a proton target at COMPASS was performed using the data collected in the year 2007. The results as a function of \(x, z \) and \(M_{\text{inv}} \) are shown in the bottom part of fig. 3 and ref. [6]. A large asymmetry up to \(-10\%\) in the valence \(x\)-region was measured. A recent extraction of \(h^p_1 \) including a flavor separation can be found in ref. [7]. As for the \(z \) dependence, no specific trend is visible, while for the invariant mass
Figure 4: Identified dihadron asymmetries from combined 2007 and 2010 proton data: $\pi^+\pi^-$, K^+K^-, π^+K^- and $K^+\pi^-$ pairs (top to bottom) as a function of x, z and M_{inv} (left to right).

Figure 5: $\pi^+\pi^-$ asymmetries from combined 2007 and 2010 proton data in comparison with HERMES data from ref. [8] and model predictions from refs. [4, 5] in the valence region ($x > 0.032$).

a negative signal around the ρ^0 mass of $0.770\text{GeV}/c^2$ is observed and the asymmetry is negative over the whole mass range.

All the COMPASS beam time in the year 2010 was dedicated to collect again data on a transversely polarized proton target. The large amount of data collected not only confirmed and improved the h^+h^- results in terms of statistics, but also allowed to expand the possibilities for further analyses. The COMPASS spectrometer allows a very precise particle identification, which can be used to determine the composition of the h^+h^- in terms of pions and kaons. In particular the signal in the
Dihadron asymmetries from COMPASS

Christopher Braun

x valence region ($x > 0.032$) is confirmed, nearly constant with a negative asymmetry in z and the structure in M_{inv} is congruent.

Since the COMPASS spectrometer allows a good charged particle identification, it has been a natural choice to combine these 2 years of data to a final COMPASS result of dihadron asymmetries of identified pairs on a polarized proton target. The results for the possible combinations $\pi^+\pi^-$, K^+K^-, π^+K^- and $K^+\pi^-$ are shown in fig. 4.

The pion pair asymmetry shows a clear signal up to -6% in x, the z dependence is compatible with a constant and for M_{inv} a pronounced peak around the ρ^0 mass is observed. The kaon pairs however with their larger statistical uncertainty show an asymmetry compatible with zero in the x and z dependence, while an indication of a negative value at large M_{inv} is given. The asymmetries of the mixed pairs are mostly compatible with zero, apart from a positive peak around $z = 0.45$ for the π^+K^- and a negative peak around $M_{inv} = 0.9\text{GeV}/c^2$ for $K^+\pi^-$. The $\pi^+\pi^-$ asymmetry was also measured by the HERMES experiment [8].

The overall agreement between these two experiments is good within the uncertainties (fig. 5) bearing in mind the larger kinematic range in x and M_{inv} of COMPASS. This is an important result, also because of the different $\langle Q^2 \rangle$ values in the valence region for the two experiments.

Both available model predictions by Bacchetta et al. [4] and Ma et al. [5] well reproduce the trend in x, as well as the peak around the ρ^0 mass, while the agreement in other mass regions and z is in general poorer, see fig. 5.

The COMPASS proton and deuteron data give a clear indication of a non-zero transversity h_1 for both u and d quarks, as shown in ref. [7]. With the recent results, of the dihadron asymmetries of identified pairs presented in this proceeding the flavor separation can be further pursued.

References

