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We discuss the gluonic correlations in the transversely polarized nucleon, which are relevant

to single and double spin asymmetries in various hard processes. We explain that the single

transverse-spin asymmetry (SSA) to be observed in theD-meson production with large transverse-

momentum in semi-inclusive deep inelastic scattering,eP↑ → eDX, is induced by the three-gluon

correlation effects. We present the numerical calculations of the corresponding SSA at the kine-

matics relevant to a future Electron Ion Collider, based on the QCD factorization formula at twist

three. We also clarify the independent degrees of freedom associated with three-gluon correlation

effects, deriving the new exact twist-three relations between the multi-gluon correlators based on

the operator product expansion and the QCD equations of motion. As a byproduct of our analysis,

we mention the transverse-spin sum rule as the partonic decomposition of the transverse nucleon

spin.
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We discuss the gluonic correlations in the transversely polarized nucleon, which are allowed at
the twist-3 level and may be main source of single and double spin asymmetries in hard processes.

We first consider theD-meson production in the semi-inclusive deep inelastic scattering (SIDIS),
e(ℓ)+P(p) → e(ℓ′)+D(Ph)+X, with the usual kinematic variables,Sep = (ℓ+ p)2, q = ℓ− ℓ′,
Q2 =−q2, xb j = Q2/(2p ·q), andzf = p ·Ph/(p ·q). This process is induced by the photon-gluon
fusion mechanism,γ∗g→ cc̄, so that the cross section is given by the corresponding partonic hard
cross section,̂σ γ∗g→cc̄, combined with the gluon distribution function in the nucleon,G(x), and the
charm quark fragmentation function into theD meson,Dc(z), and reads, schematically,

dσ ∼ G(x)⊗ σ̂ γ∗g→cc̄(x,z,Q)⊗Dc(z), (1)

where ‘⊗’ represents the appropriate convolution with the relevant momentum fractionsx, z inte-
grated over. When the nucleon is transversely polarized, we would in principle obtain the single
transverse-spin asymmetry (SSA), corresponding to the combinationdσ ∼ SSS· (ppp×PPPh), associated
with the nucleon’s spinS. Its necessary condition is: (i) the nonzero transverse-momentumPh⊥
originating from transverse motion of quark or gluon; (ii) the helicity flip by one unit in the cut di-
agrams for the cross section, corresponding to the transverse polarization; and (iii) the interaction
beyond the Born level to produce the interfering phase between the LHS and the RHS of the cut
in those cut diagrams, necessary for the naivelyT-odd SSA contribution. For largePh⊥(≫ ΛQCD),
the contribution (i) is provided as the recoil from the hard (unobserved) final-state partons. The
contribution (iii) can be obtained by loop effects although the resultant phase might be small. On
the other hand, the helicity flip by one unit of a gluon, for (ii) within the leading twist level, is im-
possible. However, if an additional nonperturbative gluon originating from the nucleon participate
in the hard scattering, this gluon allows us to obtain the helicity flip of (ii) as well as the large inter-
fering phase. This is the twist-3 mechanism for the SSA in theD-meson production, corresponding
formally to the replacement,

G(x)→ MF(x1,x2), σ̂ γ∗g→cc̄(x,z,Q)→ δ σ̂(x1,x2,z,Q), (2)

in (1), whereMF(x1,x2) is the twist-3 three-gluon correlation function in the transversely po-
larized nucleonp↑, depending on two longitudinal momentum fractionsx1,x2 of the gluons, and
δ σ̂(x1,x2,z,Q) corresponds to interference between the partonic processes,γ∗g→ cc̄ andγ∗gg→
cc̄. This factorization formula [1, 2] represents a pure gluonic analogue of the quark-gluon-
correlation mechanism for the SSA at twist-3 in the high-Ph⊥ pion production (see [3]), and the
latter mechanism is connected to the Sivers mechanism relevant for the lowPh⊥ region [4], ob-
served in HERMES and COMPASS measurements. We calculate the three-gluon twist-3 mecha-
nism for the SSA in theD-meson production, taking into account the masses for theD meson and
the charm quark.

We define the two azimuthal angles of the hadron plane and the nucleon’s spin vector,φh and
φS, measured from the lepton plane [2]. Then, the unpolarized cross section for theD-meson pro-
duction, as given by the twist-2 factorization formula (1), receives the three independent azimuthal
structures as,dσ ∼σU

1 +σU
2 cosφh+σU

3 cos2φh, while the twist-3 single-spin-dependent cross sec-
tion ∆σ for eP↑ → eDX, given by (1) with the replacement (2), receives the five azimuthal struc-
tures,d∆σ ∼ sin(φh − φS)(F1+F2cosφh+F3cos2φh)+ cos(φh − φS)(F4sinφh+F5sin2φh),
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Figure 1: The three-gluon-correlation contributions to the SSA forD0 production at EIC kinematics.

similarly as the SSA in the pion production from the quark-gluon twist-3 mechanism. This is a
consequence of the general factorization formula (1) with (2), derived by the collinear expansion
through the twist-3 accuracy1. The three-gluon correlation of twist-3,MF(x1,x2), is given by cor-
relator of the gluon-field-strength tensorFµν on the light-cone (nµ = gµ

−n−, p·n= 1, p2 =M2
N) [2]:

M αβγ
F(+)(x1,x2)≡−gi3

∫
dλ
2π

∫
dζ
2π

eiλx1eiζ (x2−x1)⟨pS⊥|i f bcaFβn
b (0)Fγn

c (ζn)Fαn
a (λn)|pS⊥⟩

=2iMN

[
N(x1,x2)g

αβ εγ pnS⊥+N(−x2,x1−x2)g
βγεα pnS⊥+N(x2−x1,−x1)g

γαεβ pnS⊥
]
, (3)

for the color structure leading to theC-even component, and similarly for theC-odd compo-
nentM αβγ

F(−) with the replacementf bca → −idbca andN(x1,x2) → O(x1,x2). Both N(x1,x2) and
O(x1,x2) are symmetric underx1 ↔ x2, and the RHS of (3) manifests permutation symmetry be-
tween the three gluons. In principle, we may obtain another type of three-gluon correlation function
∼ ⟨pS⊥|F+⊥D⊥F+⊥|pS⊥⟩ with the transverse covariant derivativeD⊥ instead of a field strength
tensor; but this “D-type” correlation function does not arise actually in the cross sectiond∆σ , so
we need only the “F-type’ correlation functionMF(x1,x2). D-type correlation will be studied later.

In the leading-order QCD calculation of the partonic hard part,δ σ̂(x1,x2,z,Q) of (2), the
interfering phase of (iii) is provided by the pole contribution of the parton propagator, arising when
the momentum of an external gluon is zero, and this “soft gluon pole” is associated with the four
functionsO(x,x),O(x,0),N(x,x),N(x,0). The explicit form of the hard parts are derived in [2].

We discuss numerical estimate of the SSA for theD0 meson production. We calculate the
asymmetries, dividing the above-mentioned five structure functions ind∆σ with the unpolarized
twist-2 cross section, asF1/σU

1 , F2,···,5/(2σU
1 ), corresponding to those types of angular aver-

ages,⟨1⟩,⟨cosφ⟩,⟨cos2φ⟩,⟨sinφ⟩, and⟨sin2φ⟩. We present the contributions due to theC-odd
three-gluon functionsO(x,x),O(x,0), because the hard parts associated with theC-even func-
tionsN(x,x),N(x,0) have similar structure as those forO(x,x), O(x,0). We assume the two types
of functional forms ofO(x,x),O(x,0) with the different small-x behavior: O(x,x) = O(x,0) =

1For recent developments on the collinear twist-3 factorization formula, see [5].
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0.004xG(x) for ‘Model 1’ andO(x,x) = O(x,0) = 0.001
√

xG(x) for ‘Model 2’, where the coeffi-
cients 0.004 and 0.001 are determined by comparing the three-gluon contribution to the SSA for
P↑P→ DX with the data observed at RHIC (see [7]). Figure1 showsF1/σU

1 andF5/(2σU
1 ) as

functions ofzf andPh⊥, respectively, at an EIC kinematics [6]. The red and blue curves show
the contributions fromO(x,x) andO(x,0), respectively, using Model 1, and similarly for the other
two curves using Model 2.F1/σU

1 is several % level. InF5/(2σU
1 ), we see the 1/Ph⊥ behavior

characteristic of the twist-3 mechanism. We note that the other asymmetriesF2,···,4/(2σU
1 ) are

small, but each shows the characteristic behavior [6]. The results for higher energy cases with
Sep= 2500 GeV2 and 5000 GeV2 are calculated [6], where the difference between the cases with
Model 1 and Model 2 is more pronounced because the smallx region plays more important role in
high energy cases. For all cases,F1/σU

1 is several % level and is large, while the other asymmetries
are small, exceptF5/(2σU

1 ), which reaches a percent level for smallPh⊥.
We turn to the issue on the D-type gluon correlation, which can be defined similarly as (3):

−i
∫

dλ
2π

∫
dζ
2π

eiλx1eiζ (x2−x1)⟨pS⊥|Fβn(0)Dγ
⊥(ζn)Fαn(λn)|pS⊥⟩

=2iMN

[
M1(x1,x2)g

αβ εγ pnS⊥+M2(x1,x2)g
βγεα pnS⊥−M2(x2,x1)g

γαεβ pnS⊥
]
. (4)

This isC-even and may be related to theC-even F-type correlation function (3): working out the
covariant derivativeDγ

⊥(ζn) on the (suppressed) Wilson line to connect the pointsζn andλn in
(4), we immediately obtain [8], M1(x1,x2) = PN(x1,x2)

x2−x1
, M2(x1,x2) = PN(x2,x2−x1)

x1−x2
+δ (x1−x2)g̃(x1),

whereP denotes the principal value and ˜g(x1) denotes a certain complicated matrix element. To
revealg̃(x1), we recall the twist decomposition of the correlator of two gluon-field-strength ten-
sors [9],∫

dλ
2π

eiλx⟨pS|Fµn(0)Fνn(λn)|pS⟩=−xMN

2
[∆G(x)iεµν pn(S·n)+2GT(x)iεµναnS⊥α + · · ·] , (5)

where the ellipses denote the terms with twist higher than three and the terms independent ofSµ .
This is analogous to the well-known decomposition of the quark correlator,

∫ dλ
2π eiλx⟨pS|ψ̄(0)γσ γ5

ψ(λn) |pS⟩ = 2MN
[
∆g(x)(S·n) pσ +gT(x)Sσ

⊥+ · · ·
]
, andGT(x) is the gluonic counterpart of the

twist-3 transverse-spin quark distributiongT(x). Eq. (5) implies thatGT(x) is associated withF−+,
a ‘bad’ component in the light-cone quantization, which can be reexpressed by the ‘good’ com-
ponents: using the equations of motion in the light-cone gauge, we obtain,F−+ = −∂+A− =

(−1/∂−)
(
D⊥ jF j++gψ̄taγ+ψta

)
, so that we find [8], GT(x) = −1

2x2

∫
dx′ (8M2(x,x′)−4M2(x′,x)

−4M1(x′,x)+GF(x′+x,x′)+GF(x′−x,x′)), where the quark-gluon twist-3 correlationGF is de-
fined as [3],

∫ dλ
2π

∫ dµ
2π eiλx1eiµ(x2−x1) ⟨pS⊥| ψ̄(0)γµgFαn(µn)ψ(λn) |pS⊥⟩=MN pµεα pnS⊥GF(x1,x2).

GT(x) can be treated in another way using the exact operator identity that reexpresses the light-
cone limitz2 → 0 of Θρ ≡ zν [(∂/∂zν)Fµz(0)F̃ ρ

µ (z)− (ν ↔ ρ)
]

in terms of the F-type three-gluon
correlation and the equations of motion (see [8]); because matrix element ofΘρ itself is given by
the helicity distribution∆G(x) and the derivative ofGT(x) based on (5), we obtain (ε(x) = x/|x|)

GT(x) =
∫ ε(x)

x
dx′

∆G(x′)
2x′

−
∫ ε(x)

x

dx′

2x′2
P
∫

dx′′

x′−x′′

[
2

(
∂

∂x′
− ∂

∂x′′

)(
N(x′,x′−x′′)−N(x′′,x′′−x′)

)
+

(
∂

∂x′
+

∂
∂x′′

)(
4N(x′,x′′)−6N(x′′,x′′−x′)−6N(x′,x′−x′′)

)
+

8
x′
(
N(x′′,x′′−x′)
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+N(x′,x′−x′′)
)]

−
∫ ε(x)

x

dx′

2x′2

∫
dx′′

(
1
x′
− ∂

∂x′

)[
GF(x

′′+x′,x′′)+GF(x
′′−x′,x′′)

]
. (6)

Comparing this with another form ofGT(x) derived above, the function ˜g(x1), mentioned below
(4), can be expressed in terms of the F-type correlationN(x1,x2), the quark-gluon correlation
GF(x1,x2), and the gluon helicity distribution∆G(x). Thus, we find that the D-type correlation
function (4) is completely expressed byN(x1,x2), GF(x1,x2), and∆G(x); similar relation has been
known between the D-type and F-type quark-gluon twist-3 correlation functions, as derived in [3].

It is worth noting that (6) is the gluonic analogue of the well-known decomposition of the quark
distributiongT(x) into the Wandzura-Wilczek (WW) part and the genuine twist-3 part (see [3]). In-
tegrating (6) over x, we find [8] that the contribution from the genuine twist-3 effect vanishes,
and, from the WW part, the first term in the RHS, we get,

∫
dxGT(x) =

∫
dx∆G(x) ≡ ∆G, simi-

larly to
∫

dxgT(x) =
∫

dx∆q(x)≡ ∆q in the quark case. On the other hand, dividing the both sides
of (5) by x and integrating the result overx, we find,⟨p S⊥|−

∫
dλε(λ )Fβn(0)Fαn(λn)|p S⊥⟩ =

2εnαβσ S⊥σ
∫

dxGT(x), indicating that
∫

dxGT(x) is given by matrix element ofM µαβ
g-spin= Fµβ Aα

−FµαAβ , the gluon-spin contribution to the angular momentum tensor, whereAα(0) =
∫

dλε(λ )
Fαn(λn)/2 in the light-cone gauge. Combining these results for

∫
dxGT(x), the gluon-spin contri-

bution to thetransversenucleon spin equals the value of the total gluon helicity∆G. Similarly, the
quark-spin contribution to thetransversenucleon spin equals the value of the total quark helicity.
The remaining contribution is the orbital angular momentum contribution,L; thus, thetransverse
spin sum rule reads [8],

1
2
= L+

1
2

∆Σ+∆G, (7)

which is formally similar as the longitudinal spin sum rule.
Now the remaining question is whether the orbital angular momentum contribution,L, in the

transverse spin sum rule (7) can be further decomposed into the quark and gluon contributions or
not. The authors in [10] recently calculated the matrix elements of the quark and gluon contri-
butions to the Pauli-Lubansky vector,−1

2εµ
νρσ pν ∫ d3xM+ρσ ≡Wµ

q +Wµ
g , with the transversely

polarized nucleon state, as⟨pS⊥|W j
q,g|pS⊥⟩/[2p+(2π)3δ 3(0)] = Jq,gSj

⊥, and argued that the result

Jq,g =(Aq,g+Bq,g)/2 holds, based onM λ µν
q,g = xµTλν

q,g −xνTλ µ
q,g , combined with the well-known pa-

rameterization of the off-forward matrix element of the (Belinfante-improved) energy-momentum
tensor of quarks/gluons,

⟨p′S′|Tµν
q,g |pS⟩= ū(p′,S′)

[
Aq,gγ(µ p̄ν)+Bq,g

p̄(µ iσν)α∆α

2MN
+Cq,g

∆µ∆ν −gµν ∆2

MN
+C̄q,gMNgµν

]
u(p,S),

(8)
with p̄µ = 1

2(p
µ + p′µ), ∆µ = p′µ − pµ ; this suggests affirmative answer to the above question.

However, we find that the corresponding result receives the additional term as [8],

Jq,g =
1
2
(Aq,g+Bq,g)+

p3

2(p0+MN)
C̄q,g, (9)

which is associated with the twist-4, trace term in (8). Thus, our conclusion is that the decomposi-
tion of the total nor orbital angular momentum of the transversely polarized nucleon into the quark
and gluon contributions is frame dependent.
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We have discussed the twist-3 gluonic correlations in the transversely polarized nucleon which
are relevant to single- and double-spin asymmetries in various hard processes. We discussed the
SSA in SIDIS for high-Ph⊥ D-meson production, induced by the twist-3 mechanism from the three-
gluon correlation inside the nucleon, and by the photon-gluon fusion. Based on the factorization
formula for the twist-3 SSA with the convolution with the F-type three-gluon correlation functions,
we find the five different azimuthal dependences and our numerical estimates of the correspond-
ing asymmetries show that the SSAs corresponding to⟨1⟩ and⟨sin2φ⟩ are large, demonstrating
good chance to access multi-gluon effects at a future EIC. We have also derived the exact rela-
tion between the F-type and D-type three-gluon twist-3 correlation functions, through giving the
decomposition of the twist-3 transverse-spin gluon distributionGT(x) into the WW and genuine
twist-3 parts. Those relations imply that the gluon and quark spin contributions to thetransverse
nucleon spin equal the total gluon and quark helicities, respectively, and this fact allow us to obtain
explicit form of thetransversespin sum rule.

I thank H. Beppu, Y. Koike, S. Yoshida, and Y. Hatta for collaboration on which this work is
based.
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