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The Neutrinos from Stored Muons (νSTORM) facility, recently proposed to FNAL and CERN,
has the potential to produce excellent neutrino cross-section measurements, as well as definitively
answering the question of sterile neutrinos and serving as a technology test bed for future muon
accelerator projects.
The main strength of its cross-section measurements is the ability to produce a beam of νe and
ν̄µ (or ν̄e and νµ ) from muon decay, with absolute confidence in the flavour contributions and
1% precision on the neutrino energy and flux. Previous high-statistics neutrino cross-section
measurements have been limited by beam precision, and the resulting uncertainties have often
constituted the dominant systematic uncertainty in neutrino oscillation experiments. Improved
measurements and models would lead to significant increases in the sensitivity of future long-
baseline experiments.
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1. Introduction

The proposed Neutrinos from Stored Muons (νSTORM) Facility [1, 2] has been designed to
deliver beams of ↪ ↩ν µ and ↪ ↩

ν e from the decay of a stored µ± beam with a central momentum of 3.8
GeV/c and a momentum spread of 10%. The proposed facility is unique in that it will:

• Serve the future long- and short-baseline neutrino-oscillation programmes by providing defini-
tive measurements of neutrino and anti-neutrino scattering cross-sections with percent-level
precision, for both electron and muon flavours;

• Allow searches of exquisite sensitivity for sterile neutrinos to be carried out; and

• Constitute the essential first step in the incremental development of muon accelerators as a
powerful new technique for particle physics.

Neutrino physics has seen some very exciting results recently, with first measurements of the
last unknown neutrino mixing angle, θ13, from the T2K[3], Daya Bay[4], RENO[5], and Double
Chooz[6] experiments. A relatively large value of θ13 has ensured that measurements of the CP vi-
olating phase, δ , will be possible for the next generation of long-baseline ν oscillation experiments;
LBNE, LBNO & T2HK.

However, the measurements of this next phase will require a large increase in sensitivity, as
the detection of a non-zero δ will rely on observing differences between either a) the rates of
νµ → νe and ν̄µ → ν̄e oscillation or b) the νe flux in the 1st and 2nd maxima of νµ → νe oscillation.
The sensitivity to CP-invariance violation depends critically on cross-section dependent systematic
effects in general and ↪ ↩

ν eN cross-sections in particular. At νSTORM, the flavour composition and
neutrino-energy spectrum of the beam can be determined to a precision of 1% or better. This makes
νSTORM unique in being able to measure ↪ ↩

ν eN and ↪ ↩
ν µN cross-sections with a precision ' 1%

over the required neutrino-energy range, 0.5 < Eν < 3 GeV, including detailed studies of different
nuclear targets and hadronic final states.

2. Neutrino Nucleon Scattering

2.1 Current Generation Measurements

The current generation of neutrino-oscillation experiments employ neutrino-interaction mod-
els developed in the 1970’s and 1980’s [7–9]. In the energy region of interest to long-baseline oscil-
lation experiments, 0.1 GeV - 3 GeV, the dominant reaction types are quasi-elastic scattering, res-
onant and coherent pion-production, and deep inelastic scattering. High statistics neutrino-nucleon
scattering measurements made by K2K [10–13], MiniBooNE [14–20] and SciBooNE [21–24] indi-
cate that the quasi-elastic scattering and pion-production models do not describe nature. The basic
neutrino-nucleon cross-sections are only known to the 20%-30% level. The two main contributing
factors are the poor knowledge of neutrino fluxes and the use of nuclear targets for all recent cross-
section measurements. The measurements made are all a convolution of an energy-dependent neu-
trino flux, energy-dependent neutrino-nucleon cross-sections, energy-dependent nuclear effects,
and energy-dependent event selection criteria in particle detectors.
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Neutrino-nucleon charged-current quasi-elastic (CCQE) scattering, νl + n→ l−+ p, is the
dominant cross-section in the 1 GeV energy region, and normally the selected oscillation signal. It
also has the advantage of allowing for an estimate of neutrino energy, reconstructed from the energy
and angle of the exiting lepton, with respect to the neutrino beam direction. Despite this importance
to the field and its relative simplicity, the CCQE cross-section is known with limited accuracy.
This is due to the large neutrino-flux uncertainties of pion decay produced neutrino beams and the
complicated nuclear effects of interacting with bound nucleons in a nuclear target. For example,
the SciBooNE νµ -CCQE measurement [21] was of an effective neutrino-carbon cross-section with
a CCQE purity of 65%. The systematic uncertainty of the measurement was energy-dependent and
in the region of 25%.

The standard theoretical models of CCQE scattering have assumed that the channel was gov-
erned by a single free parameter, the axial mass (MA). However, recent measurements have shown
a wide range of MA results (1.07 – 1.35), all significantly larger than the previous world average of
1.02. This was particularly marked in the νµC double-differential result from MiniBooNE [15]. As
MiniBooNE was insensitive to final-state nucleons, and was using a carbon target as opposed to D2,
the measurement is strictly of CCQE-like events. Several theoretical groups [25, 26] have demon-
strated that models containing significant contributions from np− nh mechanisms, which allow n
particles and n holes, with n ≥ 2, in the final state, can provide better agreement, but complicate
the modelling process.

The CCQE channel has been discussed as an example of the state of current models, but is in
no way unique in terms of the model complexity, disagreement with nature or general uncertainties.
Differences are expected between νµ and νe cross-sections, due to the difference in outgoing lepton
mass and radiative corrections, but no νe beam has ever been available to directly measure and
confirm those differences. Models and approximations are relied upon for all νe predictions in
long-baseline experiments, limiting the possible precision of any νe appearance measurement.

2.2 Limitations of Pion Produced Beams

Despite the complications of multiple nuclear targets and correctly identifying the final states
of neutrino interactions, the main uncertainty in neutrino-nucleus cross-sections is due to the un-
certainty in the flux and energy spectrum of the measured neutrino beam. The production method
for most νµ beams is fairly standard: protons are accelerated to high energies (8 GeV for Mini-
BooNE/SciBooNE, 30 GeV for T2K, 120 GeV for MINOS) and sent into a solid target (Beryllium
for MiniBooNE/SciBooNE, graphite for T2K/MINOS). The subsequent interaction produces large
quantities of pions and kaons. A series of magnetic horns is used to focus the positive particles,
while simultaneously defocussing the negative particles. The νµ are produced from the decay of
these particles:

π
+ → µ

++νµ

K+ → µ
++νµ ,π

++π
0

The decay volume generally ends in a beam dump, to slow the secondary muons and prevent their
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Figure 1: Schematic of the νSTORM facility.

decays at high energy. Still, some proportion of the muons will decay in flight:

µ
+ → e++νe + ν̄µ

producing a contamination of νe and ν̄µ in the neutrino beam.
Characterisation of a pion-produced beam relies on a complicated Monte Carlo, covering the

full chain of particle production and decay. Indirect measurements can be made, for example by
monitoring high energy muons in the beam dump, but the method still leads to large uncertainties in
both the absolute number of neutrinos and their energy distribution. These represent an irreducible
limit on cross-section measurements, at approximately the 10% level.

3. The νSTORM Proposal

The νSTORM proposal represents the simplest form of the neutrino factory idea. Neutrinos
are produced from the decay of muons in flight, which can be well characterised from beam moni-
toring tools. The full Neutrino Factory design [27, 28] uses accelerated muons with a central beam
momentum of 25 GeV/c, a process which relies on the initial cooling of the muon beam [29]. In the
νSTORM design, neutrinos come from an un-cooled, un-accelerated, muon beam, produced using
the same mechanism of pion decay as described in the previous section. This results in a lower
energy, lower luminosity beam, but still provides the benefits of a precise neutrino flux.

Two of the world’s proton-accelerator laboratories, CERN and FNAL, have the infrastructure
required to mount νSTORM. No siting decision has been made, and investigations are progressing
for implementations of νSTORM at both locations, with an international collaboration hoping for
support from both sites. A Proposal has been submitted to FNAL PAC and an Expression of Intent
to CERN, requesting funding to prepare a full design report.

3.1 Neutrino Beam Production

Figure 1 shows a schematic of the proposed νSTORM beamline. The target facility operates
under the same principles as described previously, with 60 (100) GeV protons from the Fermilab
Main Injector (CERN SPS). Details for the target are still being investigated, including the target
material and position of potential focussing magnets.
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νe νμ

Figure 2: νe (left) and ν̄µ (right) event rates per 100 T in a detector placed ∼ 50 m from the end of one of
the straight sections (for a stored µ+ beam) at νSTORM.

Pions from the target are channelled through a magnetic chicane, effectively removing all
particles other than the correctly charged pions (pion charge can be selected by reversing magnetic
fields). The pions are then injected into a racetrack style decay ring, with two straight sections of
185 m each and a total circumference of 480 m (for the current FNAL design). A proportion of the
pions will decay along the first straight, leaving muons travelling along the beamline. The turns of
the decay ring have been tuned to turn muons with momentum of 3.8 GeV ± 10%. After the first
lap, only muons survive, leaving a clean sample to produce neutrinos through the decay:

µ
+→ ν̄µ + e++νe

νSTORM could equally produce a νµ , ν̄e beam, by reversing magnet polarities.
This guarantees that the number of neutrinos and anti-neutrinos produced by νSTORM will

be exactly equal. The number of muons can be measured by beam monitoring tools at the be-
ginning and end of the decay straight, which gives a precise prediction of the neutrino flux. Our
measurement goals for the suite of beam instrumentation diagnostics in the decay ring include:

• Measuring the circulating muon intensity (on a turn by turn basis) to 0.1% absolute.

• Measuring the mean momentum to 0.1% absolute.

• Measuring the momentum spread to 1% (FWHM).

The energy of the produced neutrinos is dependent only on the physics of muon decay, which is
precisely known, and the momentum of the decaying muon, allowing for an accurate prediction of
the energy spectrum, as shown in Figure 2.

3.2 Cross-section Measurement Facility

The precisely defined beam will allow νSTORM to make excellent measurements of neutrino
cross-sections, but this will also require a suitable selection of particle detectors. The range of
measurements to be made is very wide, and the νSTORM proposal doesn’t claim to know the best
selection of detectors required to make the best measurements. Instead, the goal is to provide a
communal facility for cross-section measurements. The Near Detector (ND) Hall will be located
20 m from the end of the decay ring (in the FNAL proposal), a short distance that will maximize
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the neutrino flux and ensure that even sterile neutrino oscillation parameters wouldn’t effect the
neutrino beam composition. The ND Hall will have slots for three neutrino detectors.

The first detector will be the near detector for the short baseline sterile neutrino oscillation
search. The Super B Iron Neutrino Detector (SuperBIND), an iron and scintillator calorimeter
similar in concept to the MINOS detector, will be a 100 ton magnetized detector, optimized for
measuring CCQE νµ interactions, the golden channel of the sterile neutrino search, and paired
with a 1.6 kton far detector at 1.5 km. It is expected to have limited possibilities for cross-section
measurements.

The detectors for the two remaining slots are undefined, but initial investigations are under
way. The second detector is proposed to be a test bed for the near detector of one of the next gener-
ation long-baseline experiments, either LBNE or LBNO. This will provide an excellent opportunity
to understand the ND before it is used to characterise a long-baseline beam. By calibrating the de-
tector with the νSTORM ‘ν light source’ beam, the relevant cross-sections, detector uncertainties
and energy thresholds can be determined prior to LBNE/LBNO running. This would allow the
ND to make a direct measurement of the LBNE/LBNO beam, rather than the convolution of beam,
cross-section and detector effects described earlier.

The final detector slot would be for dedicated cross-section measurements. Detectors wouldn’t
necessarily be installed for the full 5 years of νSTORM’s initial proposed run. Instead, detectors
could be designed and tuned to specific cross-section measurements. This would allow for a range
of detector technologies to be used and tested; a targeted detector design has been observed to
be more effective at cross-section measurements than a generic detector. The detector required to
correctly reconstruct a 200 MeV π0 from a νl +X → νl +X ′+π0 interaction is very different in
design to a detector optimised for momentum measurements of 2 GeV muons while simultaneously
detecting low energy nucleons for a concerted effort at measuring νµ CCQE. Early calculations for
a ND Hall at 50 m show that in a 1 year period, with νSTORM running in µ+ configuration, a ND
could expect to see almost 8,000 νe CC and over 4,000 ν̄µ CC events per ton of fiducial volume [1].

Multiple detectors would also allow for the inclusion of multiple nuclear target materials.
The LBNE, T2HK and LBNO experiments are expected to have far detector targets of Ar, H2O
and C respectively. Cross-section measurements for all of these materials would allow for better
comparisons and combined fits between the three experiments. At the same time, the best way
to disentangle the effects of neutrino-nucleon interactions and nuclear effects is to take data with
H2 and D2 targets. H2 allows for directly measuring the neutrino-nucleon interaction, while a D2

target provides the simplest state containing a neutron, required for a νl CCQE measurement. Data
of this type has not been taken since the bubble chamber measurements at CERN in the 1980’s
(e.g. [30]). Theorists have expressed great interest in modern, higher statistics measurements of
these channels.

In fact, one option of particular interest to this researcher is reviving the bubble chamber
detector. A rapid cycling H2 bubble chamber, using fast CMOS detectors, would be a good match
in cycling rate to the νSTORM beam, providing a fully instrumented detector with excellent vertex
activity detection and particle identification abilities. There are obvious difficulties and safety
concerns in working with H2, which would require detailed examination, but the physics potential
of the measurement makes for a compelling prospect.
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4. Summary

The νSTORM facility represents an opportunity to provide a ‘neutrino light source’, an unpar-
alleled beam with a precise flux, known to the 1% level. This would remove the main systematic
uncertainty from previous measurements of neutrino cross-sections, and with the correct set of
neutrino detectors could move the field past its current limits of 20–30% errors in even the best
channels. Simultaneously, the facility would serve as an important technology test bed for muon
accelerator technology, leading to future Muon Colliders or Neutrino Factories, and would defi-
nitely answer the question of sterile neutrinos, with 10σ coverage of the region of interest within 5
years.

Proposals have been presented to both FNAL and CERN, requesting funding for detailed de-
sign studies over the next 2 years, sited at either of the facilities. The proposals would include two
slots for community-defined neutrino detectors, with a clear goal of world-leading cross-section
measurements and detector technology development. The νSTORM collaboration is new, having
grown organically through the preparation of the initial proposals, and welcomes input from parties
interested in contributing ideas or effort; please contact Alan Bross, bross@fnal.gov.
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