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1. Basic procedure to construct the statistical parton distributions

Let us first recall some of the basic ingredients for building up the parton distribution functions
(PDF) in the statistical approach, as oppose to the standard polynomial type parametrizations, based
on Regge theory at low x and counting rules at large x. The fermion distributions are given by the
sum of two terms [1], the first one, a quasi Fermi-Dirac function and the second one, a flavor and
helicity independent diffractive contribution equal for light quarks. So we have, at the input energy
scale Q2

0 = 4GeV2,

xqh(x,Q2
0) =

AXh
0qxb

exp[(x−Xh
0q)/x̄]+1

+
Ãxb̃

exp(x/x̄)+1
, (1.1)

xq̄h(x,Q2
0) =

Ā(X−h
0q )−1xb̄

exp[(x+X−h
0q )/x̄]+1

+
Ãxb̃

exp(x/x̄)+1
. (1.2)

It is important to remark that x is indeed the natural variable, since all sum we will use are ex-
pressed in terms of x. Notice the change of sign of the potentials and helicity for the antiquarks.
The parameter x̄ plays the role of a universal temperature and X±

0q are the two thermodynamical
potentials of the quark q, with helicity h = ±. It is important to remark that the diffractive con-
tribution occurs only in the unpolarized distributions q(x) = q+(x)+ q−(x) and it is absent in the
valence qv(x) = q(x)− q̄(x) and in the helicity distributions ∆q(x) = q+(x)− q−(x) (similarly for
antiquarks). The nine free parameters 1 to describe the light quark sector (u and d), namely X±

u ,
X±

d , b, b̄, b̃, Ã and x̄ in the above expressions, were determined at the input scale from the compar-
ison with a selected set of very precise unpolarized and polarized Deep Inelastic Scattering (DIS)
data [1]. The additional factors X±

q and (X±
q )−1 come from the transverse momentum dependence

(TMD), as explained in Ref. [2] (See below). For the gluons we consider the black-body inspired
expression

xG(x,Q2
0) =

AGxbG

exp(x/x̄)−1
, (1.3)

a quasi Bose-Einstein function, with bG, the only free parameter, since AG is determined by the
momentum sum rule.

We also assume that, at the input energy scale, the polarized gluon distribution vanishes, so
x∆G(x,Q2

0) = 0. For the strange quark distributions, the simple choice made in Ref. [1] was greatly
improved in Ref. [3]. Our procedure allows to construct simultaneously the unpolarized quark
distributions and the helicity distributions. This is worth noting because it is a very unique situation.
Following our first paper in 2002, new tests against experimental (unpolarized and polarized) data
turned out to be very satisfactory, in particular in hadronic collisions, as reported in Refs. [4, 5].

2. Some selected recent results

For illustration, we will just give one recent result, directly related to the determination of
the quark distributions from unpolarized DIS at NLO. We display on Fig. 1 (Left), the resulting

1A and Ā are fixed by the following normalization conditions u− ū = 2, d − d̄ = 1.
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unpolarized statistical PDF versus x at Q2=10 GeV2, where xuv is the u-quark valence, xdv the d-
quark valence, with their characteristic maximum around x = 0.3, and the gluon xG. Note that xG
is downscaled by a factor 0.05. They can be compared with the parton distributions as determined
by the HERAPDF1.5 QCD NLO fit, shown also in Fig. 1 (Right), and there is a good agreement,
except for the gluon which grows faster than the data. The results are from a recent ep collider data
from HERA, combined with previously published data and the accuracy is typically in the range of
1.3 - 2%.
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Figure 1: Left : BBS predictions for various statistical unpolarized parton distributions versus x at Q2 =

10GeV2. Right : Parton distributions at Q2 = 10GeV2, as determined by the HERAPDF fit, with different
uncertainties (Taken from Ref. [6]).
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Figure 2: Left : BBS predictions for various statistical unpolarized sea distributions versus x at Q2 =

10GeV2. Right : Sea distributions at Q2 = 10GeV2, as determined by the HERAPDF fit, with different
uncertainties (Taken from Ref. [6]).

We also give a global view of the unpolarized sea distributions displayed in Fig. 2 and we
notice that in the small x region ū and d̄ increase less rapidely than the data, whereas s̄ agrees
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rather well. Let us comment more on the important question of the flavor asymmetry of the light
antiquarks. Our determination of ū(x,Q2) and d̄(x,Q2) is perfectly consistent with the violation of
the Gottfried sum rule, for which we found the value IG = 0.2493 for Q2 = 4GeV2. Nevertheless
there remains an open problem with the x distribution of the ratio d̄/ū for x ≥ 0.2. According
to the Pauli principle, this ratio is expected to stay above 1 for any value of x. The E866/NuSea
Collaboration [7] has released the final results corresponding to the analysis of their full data set
of Drell-Yan yields from an 800 GeV/c proton beam on hydrogen and deuterium targets and, for
Q2 = 54GeV2. They obtain the ratio d̄/ū and, although the errors are rather large in the high-x
region, the statistical approach disagrees with a drop off of this ratio for x > 0.2, suggested by
the trend of the data. There is no freedom in the statistical approach, since quark and antiquark
distributions are strongly related. On the experimental side, there are now new opportunities for
extending the d̄/ū measurement to larger x up to x = 0.7, with the running E906 experiment at the
120 GeV Main Injector at Fermilab [8] and a proposed experiment at the new 30-50 GeV proton
accelerator at J-PARC [9].
For lack of space we cannot show our good results on quark helicity distributions (see Ref. [5]).

3. Transverse momentum dependence of the parton distributions

The parton distributions pi(x,k2
T ) of momentum kT , must obey the momentum sum rule

∑i
∫ 1

0 dx
∫

xpi(x,k2
T )dk2

T = 1, and also the transverse energy sum rule ∑i
∫ 1

0 dx
∫

pi(x,k2
T )

k2
T
x dk2

T =

M2. From the general method of statistical thermodynamics we are led to put pi(x,k2
T ) in corre-

spondance with the following expression exp(−x
x̄ +

−k2
T

xµ2 ) , where µ2 is a parameter interpreted as
the transverse temperature. So we have now the main ingredients for the extension to the TMD
of the statistical PDF. We obtain in a natural way the Gaussian shape with NO x,kT factorization,
because the quantum statistics distributions for quarks and antiquarks read in this case

xqh(x,k2
T ) =

F(x)
exp(x−Xh

0q)/x̄+1
1

exp(k2
T/xµ2 −Y h

0q)+1
, (3.1)

xq̄h(x,k2
T ) =

F̄(x)
exp(x+X−h

0q )/x̄+1
1

exp(k2
T/xµ2 +Y−h

0q )+1
. (3.2)

Here F(x) =
Axb−1Xh

0q

ln(1+expY h
0q)µ2 =

Axb−1

kµ2 , where Y h
0q are the thermodynamical potentials chosen such that

ln(1+ expY h
0q) = kXh

0q, in order to recover the factors Xh
0q and (Xh

0q)
−1, introduced earlier.

Similarly for q̄ we have F̄(x) = Āx2b−1/kµ2. The determination of the 4 potentials Y h
0q can be

achieved with the choice k = 3.05. Finally µ2 will be obtained from the transverse energy sum rule
and one finds µ2 = 0.198GeV2. Detailed results are shown in Ref. [2].

Before closing we would like to mention an important point. So far in all our quark or
antiquark TMD distributions, the label "‘h"’ stands for the helicity along the longitudinal
momentum and not along the direction of the momentum, as normally defined for a genuine
helicity. The basic effect of a transverse momentum kT ̸= 0 is the Melosh-Wigner rotation, which
mixes the components q± in the following way
q+MW = cos2 θ q++ sin2 θ q− and q−MW = cos2 θ q−+ sin2 θ q+, where, for massless partons,

θ = arctan( kT
p0+pz

), with p0 =
√

k2
T + p2

z . It vanishes when either kT = 0 or pz, the quark
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Figure 3: The u and d quark helicity distributions versus x: x∆q(x) (dashed line) and x∆qMW (x) (solid line).
Taken from Ref. [10]

longitudinal momentum, goes to infinity. Consequently q = q++q− remains unchanged since
qMW = q, whereas we have ∆qMW = (cos2θ − sin2θ)∆q.
For illustration we display in Fig. 3, x∆q(x) and x∆qMW (x) for Q2 = 2GeV2, which shows the
effect of the Melosh-Wigner rotation, mainly in the low x region.
A new set of PDF is constructed in the framework of a statistical approach of the nucleon. All
unpolarized and polarized distributions depend upon a small number of free parameters, with
some physical meaning. New tests against experimental (unpolarized and polarized) data on DIS,
Semi-inclusive DIS and hadronic processes are very satisfactory. It has a good predictive power
but some special features remain to be verified, specially in the high x region. The extension to
TMD has been achieved and must be checked more accurately together with Melosh-Wigner
effects in the low x region, for small Q2.
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