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1. Introduction

The precision determinations af(M2), the mass of the charm quark and the parton distribution
functions from the world data on deep-inelastic scatte(IDif5) require the heavy flavor correc-
tions to 3-loop order [1]. Here the structure functiBs(x, Q%) provides the highest precision. As
has been shown in [2] at scal@$/m¢ > 10 the asymptotic representation of the heavy flavor Wilson
coefficients provides a representation on the per cent.|&vBhey are given in terms of convolu-
tions of massive operator matrix elements (OMES) and thesless Wilson coefficients [4]. A
series of 3-loop Mellin-moments fdé% (x, Q%) and transversity and the OMEs describing the tran-
sition matrix elements in the variable flavor number schewteNS) [5, 6] have been calculated in
2009 in Refs. [7, 8] projecting the respective tensor gtiastionto massive tadpoles which could
be computed usinyATAD[9].

A program to compute the massive 3-loop Wilson coefficiehtgeaeral values dil and their
analytic continuation tdN € C started thereafter. In the unpolarized case, eight Wilsmeffie
cients/OMEs contribute. All logarithmic contributionsOflare available since they rely on the the
2-loop results [2,11] up t®(aZe) [12]. Two of the eight Wilson coefficients resp. OME[%Q

and Lé?g S, were calculated in [13]. We studied the contributions tecsiic color factors, such
asO(NgT2Car ), which are completely known now [13, 14]. Further invediigas are devoted to
diagrams with two fermion lines with finite equal [15] or umedymass [16, 17]. Genuine 3-loop
topologies of the ladder- and V-graph type have been studigtB, 19]. These calculations were
accompanied by mathematical and computer-algebraic @@vants. In course of this systematic
use is made of higher hypergeometric functions, MellinF@artechniques, and modern summa-
tion theory [20]. The latter are encoded in the packagiegna, Eval uat eMul ti Suns and
SunPr oduct i on [21]. Extensions of the harmonic sums [22] and polylogangh23] to gener-
alized harmonic sums [24,25] and the associated iterategras, the cyclotomic and generalized
cyclotomic sums and integrals [26] were developed. Mostmty iterated integrals over root-
valued letters were systematized. These functions andrédations were encoded in the package
Har noni cSuns, [25, 27], see also [28]. All these developments were necgds perform the
present calculations. They are, however, of much wider use.

In this note we report on progress being obtained duringabieylear.

2. 3-Loop OMEswith Two Fermion Lines of Equal Mass

A subset of graphs contributing to the 3-loop massive Wilsoefficients contains two fermion
lines with equal mass, characterized by the color faEﬁﬁEA. These graphs may contain new
types of sums, which, to a wider extent also emerge in thepdlomies, see Section 5. These are
weighted inverse binomial sums. An example is given by tlhgmim in Figure 1. The diagram is

1The corresponding scales are much higher in case of thetsteuiuinctionF_ (x, Q) [2], for which the 3-loop
heavy flavor corrections for general valued\ohave been calculated in [3].
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Figure1: An example for a graph with two massive fermion lines

given by
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Here and in the followin@; denote polynomials iN. The termd711/(2N—3),1/(2N —1) deserve
special attention. It can be shown that both are removalés o (N). Itis generally expected that
in QCD the rightmost singularity is locatedldt= 1. All basic topologies of this type contributing
to the OMEA&%) have been calculated.

3. 3-Loop OMEswith Two Fermion Lines of Different Mass

From the level of the 3-loop correction onwards, also grapitls two fermion lines of different
mass contribute. They require an extension of the renozatadn programme of Ref. [7]. It turns
out that the equal mass case is better included alongsitietivd@tcase of two different masses
andmy. The very close values of the charm and bottom quark masseetddlow to treat charm
massless at the scglé = m2 and one has to deal with a two-mass scenario £Yetmz/m2 ~ 1/10
allows an expansion i&. For the fixed momentl = 2,4, 6 the calculation of all OMEs has been
performed in [16, 17] after mapping them to tadpoles andgudie codegexp [29]. First results
were derived for general values Nf It is needless to say that also the matching conditionsén th
variable flavor scheme require these new and no other expnest® stay in accordance with the
renormalization group equations inside the correct fraomkwf perturbative QCD. Moreover, the
matching scales may vary considerably for different oleglas [30].

4. Ladder Graphs

First results have been obtained in the calculation of ladgaephs in the massive case, which
belong to the genuine 3-loop topologies [19]. Here the aé$snctions appearing in intermediate
and final results extends to generalized harmonic sums28}. [Let us consider the diagram in
Figure 2. The corresponding scalar graph yields
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Figure 2: Ladder graph with operator insertion.
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It can be calculated with an extension of the method of hygarlitms [31] to the case of massive
graphs with operator insertion [19] and is of weight= 5. One notices the emergence of terms
growing individually like 2V, which would potentially imply an instability at largé. However,

the asymptotic expansion of the functiﬁ;@N) shows that the corresponding terms cancel. In case
of this and more involved topologies both in the sum-repreg®n and likewise also in that by
iterated integrals the individual entities of the repreéaton, despite spanning the algebraic basis,
partly act together forming the physical structures. Iihiially they may not reflect the properties
of the complete diagram.

5. Massive Benz and V-Topologies

The method of hyperlogarithms is also suited to computedieergent diagrams of other massive
topologies such as Benz-diagrams and the V-topology. Tdmsbieen done in [18]. The diagram
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(o

Figure 3: An example of a diagram with Benz subtopology antgrdm of the V-topology
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shown in Figure 3 (left) results in
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Also in this case the asymptotic expansion is regular. Thesponding representationxrspace
leads to generalized harmonic polylogarithms. In the chsleeomassive V-topology, cf. Figure 3
(right), further extensions arise. Here finite nested bilabrind inverse binomial sums weighted
with generalized harmonic sums contribute xiapace root-valued letters contribute to the alpha-

bet, extending those of the harmonic polylogarithms by 3@ig in the case of the given graph.
An example of a contributing sum is

b

[ Wg wg,1 0( ) - ZZH\;ng,Wg (X))

_ﬁ (Hovg.1.0(0) — {2Ho, (X))]
()N - X
+= 53/ dx4_4 [2 m@‘)‘ﬁ}’
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with the lettersws, wg given by

1 1
—_— wg = —,
Xy 1—X °T X x—1/4

Here the harmonic polylogarithni$* are defined as iterated integrals w.r.t. the pgigtl. In the
case of the scalar integral of diagram Figure 3 (right) pisédivergencies] 8V, 4\ cancel, while
the onel 2N remains. It is expected to cancel for the physical graphs.

W3 =

6. O(a?) Charged Current Corrections

Charged current data on heavy flavor production will imprthe sea-quark densities. Therefore,
here theD(aZ2) QCD corrections are desirable. In the present analysest82)(as) contributions,

cf. [33,34], are used. Since the charged current HERA datdoaated in the higl®? region, the
asymptotic form of theD(a2) corrections yields a sufficient representation. It has tstedied

in Ref. [35] before. Recently these corrections have beeivatkindependently in [36] giving
the representations both in Mellin arepace, extending the former analysis and correcting some
errors.

7. Calculation of OM Es containing Benz graphs

Recently we have calculated the massive 3-loop OME%?%\'S andAﬁgSTR for general values of

N and obtained the Wilson coeﬁiciehéz?'NS, cf. [6,8]. The corresponding class of graphs contains
also massive Benz diagrams. An extension of the deelduze 2 [37, 38] to graphs with local
operator insertions allowed to reduce the corresponditegials to master integrals, which have
been calculated using hypergeometric, Mellin-Barnes awdreced summation techniques [20]. In
course of this we have also computed the complete 2-loop alooi: dimensions for transversity
;ﬁéﬁ% [39] and the contributions! T¢ of the 3-loop anomalous dimension@(z) and yﬁs(i)R inan

ab initio calculation. In the first case we confirm the resaftpl0—44] and in the second case our
earlier moments [8] and the results in [45, 46]. Details @ ttalculation are given in [47]. The

calculation of further massive OMESs is underway.

8. Conclusions

Recently progress has been made towards the completeatadoubf the 3-loop heavy flavor cor-
rections to DIS in the regio@? > m?, including the matrix elements needed in the variable flavor
number scheme at general vaIuerTheO(nfTFZCF,A) contributions have been completed. The
gluonic O(TFZ) terms are currently calculated, after all principal togiés have been solved. The
renormalization in the 2-mass case has been performed aatl @MEs the momentbl =2,4,6
were calculated. Also the setup for a VFNS in cheth charm and bottom become massless, has
been derived. No hierarchy exists for these terms indilidudhis scheme is different from the
former single mass VFNS. Diagrams of ladder-, V- and Bepoitugies containing no singular-
ities in € can be systematically calculated. Here new functions @aealuding a larger number

of root-letters in iterated integrals. All logarithmic dadbutions to the asymptotic heavy flavor
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Wilson coefficients have been determined [10]. After the YWitson coefficientd_é?gs and LégQ

had been computed in [13] we have calcula[éags andAé?gS’TR as well as the associated 2-
and 3-loop anomalous dimensions. The calculation of fufiliéson coefficients is underway.
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