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1. Introduction

The precision determinations ofαs(M2
Z), the mass of the charm quarkmc and the parton distribution

functions from the world data on deep-inelastic scattering(DIS) require the heavy flavor correc-
tions to 3-loop order [1]. Here the structure functionF2(x,Q2) provides the highest precision. As
has been shown in [2] at scalesQ2/m2

c
>∼10 the asymptotic representation of the heavy flavor Wilson

coefficients provides a representation on the per cent level. 1 They are given in terms of convolu-
tions of massive operator matrix elements (OMEs) and the massless Wilson coefficients [4]. A
series of 3-loop Mellin-moments forF2(x,Q2) and transversity and the OMEs describing the tran-
sition matrix elements in the variable flavor number scheme (VFNS) [5,6] have been calculated in
2009 in Refs. [7, 8] projecting the respective tensor quantities onto massive tadpoles which could
be computed usingMATAD [9].

A program to compute the massive 3-loop Wilson coefficients at general values ofN and their
analytic continuation toN ∈ C started thereafter. In the unpolarized case, eight Wilson coeffi-
cients/OMEs contribute. All logarithmic contributions [10] are available since they rely on the the
2-loop results [2, 11] up toO(α2

s ε) [12]. Two of the eight Wilson coefficients resp. OMEs,L(3)
qg,Q

andL(3),PS
qq,Q , were calculated in [13]. We studied the contributions to specific color factors, such

asO(NFT2
FCA,F), which are completely known now [13, 14]. Further investigations are devoted to

diagrams with two fermion lines with finite equal [15] or unequal mass [16, 17]. Genuine 3-loop
topologies of the ladder- and V-graph type have been studiedin [18, 19]. These calculations were
accompanied by mathematical and computer-algebraic developments. In course of this systematic
use is made of higher hypergeometric functions, Mellin-Barnes techniques, and modern summa-
tion theory [20]. The latter are encoded in the packagesSigma, EvaluateMultiSums and
SumProduction [21]. Extensions of the harmonic sums [22] and polylogarithms [23] to gener-
alized harmonic sums [24,25] and the associated iterated integrals, the cyclotomic and generalized
cyclotomic sums and integrals [26] were developed. Most recently iterated integrals over root-
valued letters were systematized. These functions and their relations were encoded in the package
HarmonicSums, [25, 27], see also [28]. All these developments were necessary to perform the
present calculations. They are, however, of much wider use.

In this note we report on progress being obtained during the last year.

2. 3-Loop OMEs with Two Fermion Lines of Equal Mass

A subset of graphs contributing to the 3-loop massive Wilsoncoefficients contains two fermion
lines with equal mass, characterized by the color factorT2

FCF,A. These graphs may contain new
types of sums, which, to a wider extent also emerge in the V-topologies, see Section 5. These are
weighted inverse binomial sums. An example is given by the diagram in Figure 1. The diagram is

1The corresponding scales are much higher in case of the structure functionFL(x,Q2) [2], for which the 3-loop
heavy flavor corrections for general values ofN have been calculated in [3].
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Figure 1: An example for a graph with two massive fermion lines

given by

I(N) =
1+(−1)N

2

{

1
45ε2(N+1)

−
1
ε

[

S1(N)

90(N+1)
+

47N3+20N2−67N+40
1800(N−1)N(N+1)2

]

+
105N3−175N2+56N+96

13440(N+1)2(2N−3)(2N−1)4N

(

2N
N

)

[

N

∑
j=1

4 jS1( j)
(2 j

j

)

j2
−

N

∑
j=1

4 j

(2 j
j

)

j3
−7ζ3

]

+
5264N3−2409N2−12770N+3528
100800(N+1)2(2N−3)(2N−1)

S1(N)+
S2

1(N)+S2(N)+3ζ2

360(N+1)

+
S3(N)−S2,1(N)+7ζ3

420(N+1)
+

Q0(N)

2268000(N−1)2N2(N+1)3(2N−3)(2N−1)

}

.

Here and in the followingQi denote polynomials inN. The terms∝ 1/(2N−3),1/(2N−1) deserve
special attention. It can be shown that both are removable poles inI(N). It is generally expected that
in QCD the rightmost singularity is located atN = 1. All basic topologies of this type contributing
to the OMEA(3)

gg have been calculated.

3. 3-Loop OMEs with Two Fermion Lines of Different Mass

From the level of the 3-loop correction onwards, also graphswith two fermion lines of different
mass contribute. They require an extension of the renormalization programme of Ref. [7]. It turns
out that the equal mass case is better included alongside with the case of two different massesmc

andmb. The very close values of the charm and bottom quark masses donot allow to treat charm
massless at the scaleµ2 =m2

b and one has to deal with a two-mass scenario. Yetξ =m2
c/m2

b ∼ 1/10
allows an expansion inξ . For the fixed momentsN = 2,4,6 the calculation of all OMEs has been
performed in [16, 17] after mapping them to tadpoles and using the codeqexp [29]. First results
were derived for general values ofN. It is needless to say that also the matching conditions in the
variable flavor scheme require these new and no other expressions to stay in accordance with the
renormalization group equations inside the correct framework of perturbative QCD. Moreover, the
matching scales may vary considerably for different observables [30].

4. Ladder Graphs

First results have been obtained in the calculation of ladder graphs in the massive case, which
belong to the genuine 3-loop topologies [19]. Here the classof functions appearing in intermediate
and final results extends to generalized harmonic sums, cf. [25]. Let us consider the diagram in
Figure 2. The corresponding scalar graph yields
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Figure 2: Ladder graph with operator insertion.

Î4 =
Q1(N)

2(1 + N)5(2 + N)5(3 + N)5
+

Q2(N)

(1 + N)2(2 + N)2(3 + N)2
ζ3 +

(−1)N (65 + 101N + 56N2 + 13N3 + N4)

2(1 + N)2(2 + N)2(3 + N)2
S
−3

+
(−24 − 5N + 2N2)

12(2 + N)2(3 + N)2
S3

1 −

1

2(1 + N)(2 + N)(3 + N)
S2

2 +
1

(2 + N)(3 + N)
S2

1S2

+
Q4(N)

4(1 + N)3(2 + N)2(3 + N)2
S2

1 −

3

2
S5 −

Q5(N)

6(1 + N)2(2 + N)2(3 + N)2
S3 − 2S

−2,−3 − 2ζ3S−2 − S
−2,1S−2

+
(−1)N (65 + 101N + 56N2 + 13N3 + N4)

(1 + N)2(2 + N)2(3 + N)2
S
−2,1 +

(59 + 42N + 6N2)

2(1 + N)(2 + N)(3 + N)
S4 +

(5 + N)

(1 + N)(3 + N)
ζ3S1 (2)

−

Q6(N)

4(1 + N)3(2 + N)2(3 + N)2
S2 − ζ3S2 −

3

2
S3S2 − 2S2,1S2 +

(99 + 225N + 190N2 + 65N3 + 7N4)

2(1 + N)2(2 + N)2(3 + N)
S2,1

+
Q3(N)

(1 + N)4(2 + N)4(3 + N)4
S1 −

(11 + 5N)

(1 + N)(2 + N)(3 + N)
ζ3S1 −

Q7(N)

4(1 + N)2(2 + N)2(3 + N)2
S2S1 − S2,3

+
(53 + 29N)

2(1 + N)(2 + N)(3 + N)
S3S1 −

3(3 + 2N)

(1 + N)(2 + N)(3 + N)
S1S2,1 +

(−79 − 40N + N2)

2(1 + N)(2 + N)(3 + N)
S3,1 − 3S4,1

+ S
−2,1,−2 +

2
N+1 (−28 − 25N − 4N2 + N3)

(1 + N)2(2 + N)(3 + N)2
S1,2

(

1

2
, 1

)

−

(−7 + 2N2)

(1 + N)(2 + N)(3 + N)
S2,1,1

+5S2,2,1 + 6S3,1,1 +
2

N (−28 − 25N − 4N2 + N3)

(1 + N)2(2 + N)(3 + N)2
S1,1,1

(

1

2
, 1, 1

)

−

(5 + N)

(1 + N)(3 + N)
S1,1,2

(

2,
1

2
, 1

)

−

(5 + N)

2(1 + N)(3 + N)
S1,1,1,1

(

2,
1

2
, 1, 1

)

It can be calculated with an extension of the method of hyperlogaritms [31] to the case of massive
graphs with operator insertion [19] and is of weightw = 5. One notices the emergence of terms
growing individually like∝ 2N, which would potentially imply an instability at largeN. However,
the asymptotic expansion of the functionÎ4(N) shows that the corresponding terms cancel. In case
of this and more involved topologies both in the sum-representation and likewise also in that by
iterated integrals the individual entities of the representation, despite spanning the algebraic basis,
partly act together forming the physical structures. Individually they may not reflect the properties
of the complete diagram.

5. Massive Benz and V-Topologies

The method of hyperlogarithms is also suited to compute non-divergent diagrams of other massive
topologies such as Benz-diagrams and the V-topology. This has been done in [18]. The diagram
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.

Figure 3: An example of a diagram with Benz subtopology and a diagram of the V-topology

shown in Figure 3 (left) results in

I(N) =
1

(N+1)(N+2)

{

2
(

1−13(−1)N +(−1)N23+N +N−7(−1)NN+3(−1)N21+NN
)

(1+N)(2+N)
ζ3

+
1

(2+N)
S3+

(−1)N

2(2+N)
S3

1−
(−1)N(3+2N)

2(1+N)2(2+N)
S2+

5(−1)N

2
S2

2

+
(−1)N(3+2N)

2(1+N)2(2+N)
S2

1−
(−1)N

2
S2S2

1+
3(−1)N(4+3N)

(1+N)(2+N)
S3+3(−1)NS4+

2
(2+N)

S−2,1

+2(−1)Nζ3S1 (2)+
2(−1)N(3+N)

(1+N)(2+N)
S2,1−12(−1)NS1ζ3

+
(−1)N(5+7N)

2(1+N)(2+N)
S1S2+3(−1)NS1S3+4(−1)NS2,1S1−4(−1)NS3,1

−
4
(

(−1)N22+N −3(−2)NN+3(−1)N21+NN
)

(1+N)(2+N)
S1,2

(

1
2
,1

)

−5(−1)NS2,1,1

+
2
(

−(−1)N22+N −13(−2)NN+5(−1)N21+NN
)

(1+N)(2+N)
S1,1,1

(

1
2
,1,1

)

−2(−1)NS1,1,2

(

2,
1
2
,1

)

− (−1)NS1,1,1,1

(

2,
1
2
,1,1

)

}

.

Also in this case the asymptotic expansion is regular. The corresponding representation inx-space
leads to generalized harmonic polylogarithms. In the case of the massive V-topology, cf. Figure 3
(right), further extensions arise. Here finite nested binomial and inverse binomial sums weighted
with generalized harmonic sums contribute. Inx-space root-valued letters contribute to the alpha-
bet, extending those of the harmonic polylogarithms by 30 letters in the case of the given graph.
An example of a contributing sum is

N

∑
i=1

1

(i +1)

(

2i
i

)

i

∑
j=1

(

2 j
j

)

1
j
S2( j) =

∫ 1

0
dx

xN −1
x−1

[

x
2

(

H∗
w8,w8,1,0(x)−ζ2H∗

w8,w8
(x)

)

−
x

√

x−1/4

(

H∗
w8,1,0(x)−ζ2H∗

w8
(x)

)

]

+
2
3

ζ3

∫ 1

0
dx

(

x
4

)N −1

x−4

[

x
2

H∗
w3
(x)−

x√
1−x

]

,
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with the lettersw3,w8 given by

w3 =
1

x
√

1−x
, w8 =

1

x
√

x−1/4
.

Here the harmonic polylogarithmsH∗ are defined as iterated integrals w.r.t. the pointx= 1. In the
case of the scalar integral of diagram Figure 3 (right) potential divergencies∝ 8N,4N cancel, while
the one∝ 2N remains. It is expected to cancel for the physical graphs.

6. O(α2
s ) Charged Current Corrections

Charged current data on heavy flavor production will improvethe sea-quark densities. Therefore,
here theO(α2

s ) QCD corrections are desirable. In the present analyses [32]theO(αs) contributions,
cf. [33, 34], are used. Since the charged current HERA data are located in the highQ2 region, the
asymptotic form of theO(α2

s ) corrections yields a sufficient representation. It has beenstudied
in Ref. [35] before. Recently these corrections have been derived independently in [36] giving
the representations both in Mellin andx-space, extending the former analysis and correcting some
errors.

7. Calculation of OMEs containing Benz graphs

Recently we have calculated the massive 3-loop OMEsA(3),NS
qq,Q andA(3),NS,TR

qq,Q for general values of

N and obtained the Wilson coefficientL(3),NS
qq,Q , cf. [6,8]. The corresponding class of graphs contains

also massive Benz diagrams. An extension of the codeReduze 2 [37, 38] to graphs with local
operator insertions allowed to reduce the corresponding integrals to master integrals, which have
been calculated using hypergeometric, Mellin-Barnes and advanced summation techniques [20]. In
course of this we have also computed the complete 2-loop anomalous dimensions for transversity
γ±,(1)

NS,TR [39] and the contributions∝ TF of the 3-loop anomalous dimensionsγ±,(2)
NS andγ±,(2)

NS,TR in an
ab initio calculation. In the first case we confirm the resultsof [40–44] and in the second case our
earlier moments [8] and the results in [45, 46]. Details of this calculation are given in [47]. The
calculation of further massive OMEs is underway.

8. Conclusions

Recently progress has been made towards the complete calculation of the 3-loop heavy flavor cor-
rections to DIS in the regionQ2 ≫ m2, including the matrix elements needed in the variable flavor
number scheme at general values ofN. TheO(nf T2

FCF,A) contributions have been completed. The
gluonicO(T2

F ) terms are currently calculated, after all principal topologies have been solved. The
renormalization in the 2-mass case has been performed and for all OMEs the momentsN = 2,4,6
were calculated. Also the setup for a VFNS in casebothcharm and bottom become massless, has
been derived. No hierarchy exists for these terms individually. This scheme is different from the
former single mass VFNS. Diagrams of ladder-, V- and Benz-topologies containing no singular-
ities in ε can be systematically calculated. Here new functions occur, including a larger number
of root-letters in iterated integrals. All logarithmic contributions to the asymptotic heavy flavor
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Wilson coefficients have been determined [10]. After the twoWilson coefficientsL(3),ps
qq,Q andL(3)

qg,Q

had been computed in [13] we have calculatedL(3),NS
qq,Q andA(3),NS,TR

qq,Q as well as the associated 2-
and 3-loop anomalous dimensions. The calculation of further Wilson coefficients is underway.
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