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1. Introduction

Several observables have been suggested as a way to study thehigh energy limit of QCD.
In this limit, the smallness of the strong couplingαs can be compensated by large logarithmic
enhancements of the type[αs ln(s/|t|)]n which have to be resummed, giving rise to the leading log-
arithmic (LL) Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron [1, 2, 3, 4]. Mueller and Navelet
proposed to study the production of two jets with large rapidity separation at hadron colliders [5].
In a pure leading order collinear treatment these two jets would be emitted back to back, while a
BFKL treatment allows some emission between these jets and so should lead to a larger cross sec-
tion and lower angular correlation of the jets. We present results of a full NLL analysis where the
NLL corrections are included for the BFKL Green’s function [6, 7] and the jet vertices [8, 9, 10].

Here we will focus on the azimuthal correlations〈cosnϕ〉 and ratios of these observables at
a center of mass energy

√
s= 7 TeV which have been measured recently at the LHC by the CMS

collaboration [11] and make some comparison of our results [12] both with these data and with
results obtained in a fixed order NLO treatment.

2. Basic formulas

x1

x2

↓ k1, φ1

↓ k2, φ2

kJ,1, φJ,1, xJ,1

kJ,2, φJ,2, xJ,2

Figure 1: Kinematics of the process

We consider the process shown on figure 1, in which two hadronscollide at a center of mass
energy

√
s. Using collinear factorization, the differential cross section reads

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

= ∑
a,b

∫ 1

0
dx1

∫ 1

0
dx2 fa(x1) fb(x2)

dσ̂ab

d|kJ,1|d|kJ,2|dyJ,1 dyJ,2
, (2.1)

wherekJ,1, kJ,2 are the transverse momenta of the jets,yJ,1 andyJ,2 their rapidities andfa,b are the
parton distribution functions (PDFs) of a parton a (b) in theaccording proton. In this expression,
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the partonic cross section is

dσ̂ab

d|kJ,1|d|kJ,2|dyJ,1 dyJ,2
=

∫

dφJ,1 dφJ,2

∫

d2k1d2k2Va(−k1,x1)G(k1,k2, ŝ)Vb(k2,x2), (2.2)

whereφJ,1 andφJ,2 are the azimuthal angles of the jets,Va,b is the jet vertex initiated by the parton a
(b) andG is the BFKL Green’s function which depends on ˆs= x1x2s. It is convenient to introduce
the coefficientsCn, defined as

Cn = (4−3δn,0)
∫

dν Cn,ν(|kJ,1|,xJ,1)C
∗
n,ν(|kJ,2|,xJ,2)

(

ŝ
s0

)ω(n,ν)
, (2.3)

such that

dσ
d|kJ,1|d|kJ,2|dyJ,1 dyJ,2

= C0 and 〈cos(nϕ)〉 ≡ 〈cos
(

n(φJ,1−φJ,2−π)
)

〉= Cn

C0
. (2.4)

In eq. (2.3),Cn,ν is defined as

Cn,ν(|kJ|,xJ) =

∫

dφJ d2k dx f(x)V(k,x)En,ν (k)cos(nφJ) , (2.5)

with the LL BFKL eigenfunctionsEn,ν being

En,ν(k1) =
1

π
√

2

(

k2
1

)iν− 1
2 einφ1 . (2.6)

At LL accuracy,ω(n,ν) is

ω(n,ν) = ᾱsχ0

(

|n|, 1
2
+ iν

)

, χ0(n,γ) = 2Ψ(1)−Ψ
(

γ +
n
2

)

−Ψ
(

1− γ +
n
2

)

, (2.7)

with ᾱs = αNc/π andΨ(z) = Γ′(z)/Γ(z) , and the vertex is

Va(k,x) =V(0)
a (k,x) =

αs√
2

CA/F

k2 δ
(

1− xJ

x

)

|kJ|δ (2)(k −kJ) , (2.8)

(CA for a= g andCF for a= q), while at NLL, we have

ω(n,ν) = ᾱsχ0

(

|n|, 1
2
+ iν

)

+ ᾱ2
s

[

χ1

(

|n|, 1
2
+ iν

)

− πb0

Nc
χ0

(

|n|, 1
2
+ iν

)

ln
|kJ,1| · |kJ,2|

µ2
R

]

,

(2.9)
with b0 = (33−2Nf )/(12π) andVa(k,x) =V(0)

a (k,x)+αsV
(1)
a (k,x). The expression of the NLL

corrections to the Green’s function resulting inχ1 can be found in eq. (2.17) of ref. [12]. The
expressions of the NLL corrections to the jet vertices are quite lenghty and will not be reproduced
here. They can be found in ref. [13], as extracted from refs. [8, 9] after correcting a few misprints
of ref. [8]. They have been recently reobtained in ref. [10].In the limit of small cone jets, they
have been computed in ref. [14] and applied to phenomenologyin refs. [15, 16]. Here we will
use the cone algorithm with a size ofRcone= 0.5. We choose the central value

√

|kJ,1| · |kJ,2| for
the renormalization scaleµR, the factorization scaleµF and the energy scale

√
s0, and vary these

scales by a factor of 2 to estimate the scale uncertainty of our calculation. We use the MSTW 2008
PDFs [17] and a two-loop running coupling. We also include collinear improvement to the Green’s
function as was suggested in refs. [18, 19, 20, 21] and extended forn 6= 0 in refs. [22, 23, 24].

3



P
o
S
(
D
I
S
 
2
0
1
3
)
3
0
9

Mueller Navelet jets at LHC: a clean test of QCD resummation effects at high energy? Bertrand Ducloué

3. Results: symmetric configuration

In this section, we show results for a symmetric configuration (identical lower cut for the
transverse momenta of the jets) with cuts

35GeV< |kJ,1|, |kJ,2| < 60GeV,

0< y1, y2 < 4.7. (3.1)

This is close to the cuts used by CMS in [11] with the exceptionthat for numerical reasons we have
to set an upper cut on the transverse momenta of the jets. We have checked that our results do not
depend strongly on the value of this cut as the cross section is strongly peaked near the minimum
value allowed forkJ,1 andkJ,2. This enables us to compare our predictions with LHC data.

In the following we will study several BFKL scenarios, from apure LL approximation (LL
Green’s function and leading order jet vertex) to a full NLL calculation (NLL Green’s function and
NLL jet vertex). The color convention we will use for the plots showing the different approaches
is the following:

blue: pure LL result
magenta: combination of LL vertices with pure NLL Green’s function
green: combination of LL vertices with collinear improved NLL Green’s function
brown: pure NLL result
red: full NLL vertices with collinear improved NLL Green’s function.

(3.2)

We begin our analysis with the azimuthal correlation〈cosϕ〉. In figure 2 (L) we show the
variation of〈cosϕ〉 with respect to the rapidity separation between the two jetsY in the 5 scenarios
(3.2). We observe that a pure LL treatment leads to a large decorrelation between the two jets, and
that the NLL corrections to the Green’s function restores a little correlation. The effect of the NLL
corrections to the jet vertices is even larger and so a full NLL treatment predicts a value of〈cosϕ〉
very close to 1 (i.e. very close to be back-to-back). We also note that in this case the collinear
improvement of the Green’s function has a very small effect compared to the LL vertices case.
In figure 2 (R) we show the variation of our NLL result when varying µ ands0 by a factor of 2
and compare it with CMS data (black dots with error bars). We see that NLL BFKL predicts a
larger correlation than seen in the data, but this observable is strongly dependent on the value of
the scales.

In figure 3 we consider the observable〈cos2ϕ〉. We observe a similar behavior as for〈cosϕ〉,
the NLL corrections to the jet vertices produce a much largerchange than the NLL corrections to
the Green’s function. Again the dependence of the NLL calculation on the choice ofµ ands0 is
large, and taking this dependence into account the BFKL result is not very far from data.

The extraction of ratios of the previously mentioned observables was also performed in [11].
In figure 4 we show results for〈cos2ϕ〉/〈cosϕ〉. We see that again the effect of NLL corrections
to the vertices is important, but that this observable is more stable with respect toµ ands0 than the
previous ones. The agreement with data is very good over a largeY range.
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Figure 2: Left: value of〈cosϕ〉 as a function of the rapidity separationY, using symmetric cuts defined
in (3.1), for the 5 different BFKL treatments (3.2). Right: comparison of the full NLL BFKL calculation
including the scale uncertainty with CMS data.
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Figure 3: Left: value of〈cos2ϕ〉 as a function of the rapidity separationY, using symmetric cuts defined
in (3.1), for the 5 different BFKL treatments (3.2). Right: comparison of the full NLL BFKL calculation
including the scale uncertainty with CMS data.
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Figure 4: Left: value of〈cos2ϕ〉/〈cosϕ〉 as a function of the rapidity separationY, using symmetric cuts
defined in (3.1), for the 5 different BFKL treatments (3.2). Right: comparison of the full NLL BFKL
calculation including the scale uncertainty with CMS data.
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4. Results: asymmetric configuration

To study the need for resummation to get a better descriptionof the data, it would be interesting
to study the agreement of a fixed order calculation with the data. However, fixed order calculations
have instabilities when the lower cuts on the transverse momenta of the jets are identical, so we
cannot compare such calculations with the results of [11]. Thus in this section we compare our
BFKL calculation with the fixed order NLO code DIJET [25] in an asymmetric configuration with
the following cuts:

35GeV< |kJ,1|, |kJ,2| < 60GeV,

50GeV< Max(|kJ,1|, |kJ,2|) ,
0< y1, y2 < 4.7. (4.1)

We first consider the azimuthal correlation〈cosϕ〉 (figure 5). We observe that DIJET predicts a
much larger correlation between the jets than the three BFKLtreatments using LL vertices, while
a full NLL BFKL calculation produces an even larger correlation than fixed order. But when we
take into account the large dependence of the BFKL calculation on the scales we find that there is
an agreement between NLL BFKL and fixed order NLO.
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Figure 5: Left: value of〈cosϕ〉 as a function of the rapidity separationY, using asymmetric cuts defined in
(4.1), for the 5 different BFKL scenarios (3.2). Right: comparison of the full NLL calculation including the
scale uncertainty with DIJET predictions.

A similar conclusion can be drawn when considering〈cos2ϕ〉, as shown in figure 6. Again
the scale uncertainty does not allow to distinguish betweenNLL BFKL and fixed order NLO.

In figure 7 we show results for the observable〈cos2ϕ〉/〈cosϕ〉. Here the fixed order NLO
calculation is significantly above all the BFKL calculations. As in the symmetric case this observ-
able is quite stable with respect to the scales so the difference between NLL BFKL and fixed order
NLO does not vanish when we take into account the scale uncertainty.

5. Conclusions

For the first time, we have been able to compare the predictions of our full NLL BFKL cal-
culation of Mueller-Navelet jets with data taken at the LHC thanks to data presented by the CMS
collaboration. This comparison shows that for the observables〈cosnϕ〉 a pure LL BFKL treatment
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Figure 6: Left: value of〈cos2ϕ〉 as a function of the rapidity separationY, using asymmetric cuts defined
in (4.1), for the 5 different BFKL scenarios (3.2). Right: comparison of the full NLL calculation including
the scale uncertainty with DIJET predictions.
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Figure 7: Left: value of〈cos2ϕ〉/〈cosϕ〉 as a function of the rapidity separationY, using asymmetric cuts
defined in (4.1), for the 5 different BFKL scenarios (3.2). Right: comparison of the full NLL calculation
including the scale uncertainty with DIJET predictions.

or a mixed treatment where the NLL Green’s function is used together with LL vertices cannot
describe the data. On the other hand, the results of our complete NLL calculation do not agree very
well with the data when the scales involved are fixed at their ’natural’ value

√

|kJ,1| · |kJ,2|, but as
the dependence on these scales is still quite large no firm conclusion can be drawn at the moment.
The investigation of these issues is essential and left for future work. On the contrary we saw that
ratios of these observables are more stable with respect to changes of the scales and describe the
data quite well.

To find an evidence for the need of BFKL-type resummation a comparison with a fixed order
treatment would be needed to see if the BFKL calculation provides a better description of the data.
For the moment we cannot do such comparison as the configuration chosen by the CMS collabora-
tion would lead to unstable results in a fixed order calculation. However, we compared our results
with the fixed order NLO code DIJET in an asymmetric configuration and found that for the ob-
servables〈cosnϕ〉 no significant difference is observed when taking into account the uncertainties
associated with the choice of the scales. In contrast we see that for〈cos2ϕ〉/〈cosϕ〉 the two calcu-
lations lead to noticeably different results. This, added to the fact that this observable is quite stable
with respect to the scales, confirms that it seems to be well-suited to study resummation effects at
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high energy and that an experimental analysis with slightlydifferent lower cuts on the transverse
momenta of the jets may be of interest.
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