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We present a new QCD description of the ATLAS jet veto measurement, using the Banfi-
Marchesini-Smye equation to constrain the inter-jet QCD radiation. This equation resums emis-
sions of soft gluons at large angles and leads to a very good description of data. We also investigate
jet gap jet events in hadron-hadron collisions, in which two jets are produced and separated by
a large rapidity gap. Using a renormalisation-group improved NLL kernel implemented in the
HERWIG Monte Carlo program, we show that the BFKL predictions are in good agreement with
the Tevatron data, and present predictions that could be tested at the LHC.
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Recently the ATLAS collaboration measured, in proton-proton collisions at the LHC, the frac-
tion of di-jet events that do not contain additional hard radiation in the inter-jet rapidity range [1].
The original goal of this measurement was to look for BFKL-type effects [2], as was previously
done at the Tevatron with the so-called ‘jet-gap-jet’ observable [3, 4, 5]. However the use of a
veto scale Eout � ΛQCD by ATLAS, instead of a true rapidity gap void of any hadronic activity,
drastically reduces the sensitivity to BFKL physics. In a first section of this report, we discuss the
description of the ATLAS jet veto measurement and in a second section, we discuss the jet gap het
events where the gap is a region of the detector devoid of any activity.

1. ATLAS measurement of the jet veto cross section

1.1 ATLAS measurement

The ATLAS collaboration chose to select events with two high pT jets well separated by
the interval in rapidity ∆y. The idea is then to veto on additional jet activity between the two jets
requesting the absence of reconstructed jets with pT >Q0 with Q0�ΛQCD. By default, Q0 is taken
at 20 GeV. The events with such configuration are called “gapped". The observable of interest is
the gapped fraction in proton-proton collisions at

√
s = 7 TeV. It is defined as

R(∆y, pT )≡
dσveto

d∆yd2 pT

/ dσ incl

d∆yd2 pT
, (1.1)

where σ incl is the inclusive cross section of di-jet events and ∆y is the rapidity difference of the two
jets which have mean transverse momentum pT = (pT,1+ pT,2)/2≥ 50 GeV and rapidity |yi|< 4.4.
Jets are reconstructed using the anti-kt algorithm [6] with the radius parameter R = 0.6. In defining
the di-jet system in each event, ATLAS used two different selection criteria: The highest-pT jet
pair and the most forward/backward jet pair. σveto is the gapped cross section in which a veto is
applied to the di-jet cross section requiring that no jet with pT above Eout = 20 GeV is observed in
the rapidity interval between the two jets.

Data are compared with the NLO MC approach using POWHEG [7] and parton shower using
PYTHIA [8] or HERWIG [9] or the BFKL calculation as implemented in the HEJ [10] Monte
Carlo, large discrepancies are found. Both approaches miss the resummation of soft gluons at large
angles as we will see in the following.

1.2 Jet veto using the BSM formalism

The resummation of soft gluon emissions at large angle is not taken into account in usual
parton shower Monte Carlo. It was computed in the e+e− case where one can resum the soft
logarithms αS log pT/Eout when the jet pT is much larger than Eout while requiring that the energy
flow into the region between the jets is less than Eout .

The e+e− case was extended to the pp one, and we use the Banfi Marchesini Smye equa-
tion [11] to compute the probability PT that the total energy emitted outside the jet cone is less than
Eout

2



P
o
S
(
P
h
o
t
o
n
 
2
0
1
3
)
0
1
6

BFKL tests at hadronic colliders Christophe Royon

Figure 1: Geometry for the region between jets defining the “in" and “out" regions as well as the emitted
soft photon.

∂T PT (Ωα ,Ωβ ) =−
∫

Cout

d2Ωγ

4π

1− cosθαβ

(1− cosθαγ)(1− cosθγβ

PT (Ωα ,Ωβ )+∫
Cin

d2Ωγ

4π

1− cosθαβ

(1− cosθαγ)(1− cosθγβ

(
PT (Ωα ,Ωγ)PT (Ωγ ,Ωβ )−PT (Ωα ,Ωβ )

)
(1.2)

where the Sudakov and the non-global logarithms are resummed. Numerical solutions of this
equation are available [12] and we used them for our calculation.

1.3 Comparison with ATLAS measurement

The comparison with ATLAS data is given in Figs. 2 and 3 as a function of the rapidity interval
between the jets for Eout =20 GeV and as a function of Eout . The description of the ∆y dependence
is very good [13] showing that the discrepancy between the ATLAS data and the NLO calculation
was indeed due to the lack of resummation of the soft gluons at large angles. The Eout dependence
is poorly described when the jet pT are of similar values as Eout as expected. It is clear that the
jet veto cross section measurement is not a good test of the BFKL resummation effect and other
obsevables such as gap devoid of any energy between jets are needed.

2. Jet gap jet cross section measurements at the LHC

In a hadron-hadron collision, a jet-gap-jet event features a large rapidity gap with a high−ET

jet on each side (ET �ΛQCD). Across the gap, the object exchanged in the t−channel is color
singlet and carries a large momentum transfer, and when the rapidity gap is sufficiently large the
natural candidate in perturbative QCD is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron [2].
Of course the total energy of the collision

√
s should be big (

√
s� ET ) in order to get jets and a

large rapidity gap.
Following the success of the forward jet and Mueller Navelet jet BFKL NLL studies [14],

we use the implementation of the BFKL NLL kernel inside the HERWIG [9] Monte Carlo to
compute the jet gap jet cross section, compare our results with the Tevatron measurement and
make predictions at the LHC [5].
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Figure 2: Comparison of the resummed veto fraction with the ATLAS measurement, for a fixed veto energy
of Eout = 20 GeV, in different bins of pT . The inner (green) uncertainty band is obtained taking into account
only the renormalization and factorization scale uncertainties, while the outer (yellow) band also includes the
subleading logarithmic uncertainty. For the ATLAS data, circles represent the case where the two leading
jets are selected while the one where the most forward and backward jets are selected are represented by
crosses.

2.1 BFKL NLL formalism

The production cross section of two jets with a gap in rapidity between them reads

dσ pp→XJJY

dx1dx2dE2
T
= S fe f f (x1,E2

T ) fe f f (x2,E2
T )

dσgg→gg

dE2
T

, (2.1)

where
√

s is the total energy of the collision, ET the transverse momentum of the two jets, x1 and
x2 their longitudinal fraction of momentum with respect to the incident hadrons, S the survival
probability, and f the effective parton density functions [5]. The rapidity gap between the two jets
is ∆η = ln(x1x2s/p2

T ).
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Figure 3: Comparison of the resummed veto fraction with the ATLAS measurement, for different kinematic
bins, as a function of the veto threshold Eout .

The cross section is given by

dσgg→gg

dE2
T

=
1

16π

∣∣A(∆η ,E2
T )
∣∣2 (2.2)

in terms of the gg→ gg scattering amplitude A(∆η , p2
T ).

In the following, we consider the high energy limit in which the rapidity gap ∆η is assumed
to be very large. The BFKL framework allows to compute the gg→ gg amplitude in this regime,
and the result is known up to NLL accuracy

A(∆η ,E2
T ) =

16Ncπα2
s

CFE2
T

∞

∑
p=−∞

∫ dγ

2iπ
[p2− (γ−1/2)2]exp

{
ᾱ(E2

T )χe f f [2p,γ, ᾱ(E2
T )]∆η

}
[(γ−1/2)2− (p−1/2)2][(γ−1/2)2− (p+1/2)2]

(2.3)

with the complex integral running along the imaginary axis from 1/2−i∞ to 1/2+i∞, and with
only even conformal spins contributing to the sum, and ᾱ = αSNC/π the running coupling.

Let us give some more details on formula 2.3. The NLL-BFKL effects are phenomenologically
taken into account by the effective kernels χe f f (p,γ, ᾱ). The NLL kernels obey a consistency
condition which allows to reformulate the problem in terms of χe f f (γ, ᾱ). The effective kernel
χe f f (γ, ᾱ) is obtained from the NLL kernel χNLL(γ,ω) by solving the implicit equation χe f f =

χNLL(γ, ᾱ χe f f ) as a solution of the consistency condition.
In this study, we performed a parametrised distribution of dσgg→gg/dE2

T so that it can be easily
implemented in the Herwig Monte Carlo since performing the integral over γ in particular would
be too much time consuming in a Monte Carlo. The implementation of the BFKL cross section in
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Figure 4: Comparisons between the D0 measurements of the jet-gap-jet event ratio with the NLL- and
LL-BFKL calculations. For reference, the comparison with the LL BFKL with only the conformal spin
component p = 0 is also given.

a Monte Carlo is absolutely necessary to make a direct comparison with data. Namely, the mea-
surements are sensititive to the jet size (for instance, experimentally the gap size is different from
the rapidity interval between the jets which is not the case by definition in the analytic calculation).

2.2 Comparison with Tevatron measurements

Let us first notice that the sum over all conformal spins is absolutely necessary. Consider-
ing only p = 0 in the sum of Equation 2.3 leads to a wrong normalisation and a wrong jet ET

dependence, and the effect is more pronounced as ∆η diminishes.
The D0 collaboration measured the jet gap jet cross section ratio with respect to the total

dijet cross section, requesting for a gap between -1 and 1 in rapidity, as a function of the second
leading jet ET , and ∆η between the two leading jets for two different low and high ET samples
(15< ET <20 GeV and ET >30 GeV). To compare with theory, we compute the following quantity

Ratio =
BFKL NLL HERWIG

Di jet Herwig
× LO QCD

NLO QCD
(2.4)

in order to take into account the NLO corrections on the dijet cross sections, where BFKL NLL
HERWIG and Di jet Herwig denote the BFKL NLL and the dijet cross section implemented in
HERWIG. The NLO QCD cross section was computed using the NLOJet++ program [16].

The comparison with D0 data [17] is shown in Fig. 4. We find a good agreement between
the data and the BFKL calculation. It is worth noticing that the BFKL NLL calculation leads
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Figure 5: Ratio of DPE Jet gap jet events to standard DPE dijet events as a function of the leading jet
pT [15].

to a better result than the BFKL LL one (note that the best description of data is given by the
BFKL LL formalism for p = 0 but it does not make sense theoretically to neglect the higher spin
components and this comparison is only made to compare with previous LL BFKL calculations).
The comparisons with the CDF data is found to be similar.

2.3 Predictions for the LHC

Using the same formalism, and assuming a survival probability of 0.03 at the LHC, it is possi-
ble to predict the jet gap jet cross section at the LHC. While both LL and NLL BFKL formalisms
lead to a weak jet ET or ∆η dependence, the normalisation if found to be quite difference leading
to higher cross section for the BFKL NLL formalism [5].

2.4 Jet gap jet production in double Pomeron exchanges processes

In this process, both protons are intact after the interaction and detected in the forward proton
detectors to be installed in CMS/TOTEM and ATLAS at 210 m, two jets are measured in the
ATLAS/CMS central detector and a gap devoid of any energy is present between the two jets [15].
This kind of event is important since it is sensitive to QCD resummation dynamics given by the
BFKL [2] evolution equation . This process has never been measured to date and will be one of the
best methods to probe these resummation effects, benefitting from the fact that one can perform the
measurement for jets separated by a large angle (there is no remnants which ‘pollute’ the event). As
an example, the cross section ratio for events with gaps to events with or without gaps as a function
of the leading jet pT is shown in Fig 5 for 300 pb−1. The measurement has to be performed at
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medium luminosity at the LHC so that the gap between the jets is not “polluted" by pile up events.
The presence of few pile up events in average is still possible for this measurement since central
gaps can be identified using central tracks fitted to the main vertex of the event. It is worth noticing
that the ratio between the jet gap jet and the dijet cross sections in DPE events is of the order of
20% which is much higher than the expectations for non-diffractive events. This is due to the fact
that the survival probability of 0.03 at the LHC does not need to be applied for diffractive events.
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