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Vacuum magnetic birefringence
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We present the measurement of the vacuum magnetic linear birefringence obtained using the
first generation setup of the BMV experiment. Our apparatus is based on an up-to-date resonant
optical cavity coupled to a transverse magnetic field. The reported value of vacuum magnetic
linear birefringence kCM, obtained with about 100 magnetic pulses and a maximum field of 6.5 T,
is kCM = (5.1± 6.2)× 10−21 T−2 at 3σ confidence level. This result is also used to extend the
excluded region of axion-two photons coupling constant g as a function of the axion mass ma.
The best limit is obtained at ma = 3.3 meV with g < 1.9×10−6 GeV−1 at 3σ confidence level.

Photon 2013,
20-24 May 2013
Paris, France

∗Speaker.

c⃝ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:carlo.rizzo@lncmi.cnrs.fr


P
o
S
(
P
h
o
t
o
n
 
2
0
1
3
)
0
3
9

BMV Carlo Rizzo

1. Introduction

In the presence of a transverse external magnetic field B, any medium shows a linear birefrin-
gence. The existence of such a magnetic linear birefringence is also predicted in vacuum through
the Quantum ElectroDynamics (QED) Heisenberg-Euler effective lagrangian (see Ref. [1] and ref-
erences therein). In a vacuum therefore the index of refraction n∥ for light polarized parallel to B is
expected to be different from the index of refraction n⊥ for light polarized perpendicular to B such
that [1]:

∆nCM = n∥−n⊥ = kCMB2. (1.1)

The experimental proof of such a very fundamental QED prediction is still lacking [1]. At the first
order in the fine structure constant α , kCM can be written as:

kCM = 2α2h̄3/15µ0m4
ec5, (1.2)

with h̄ the Planck constant over 2π , me the electron mass, c the speed of light in vacuum, and µ0

the magnetic constant. Using the CODATA recommended values for fundamental constants [2],
one obtains kCM ∼ 4.0×10−24T−2.

In our experiment, we measure ∆nCM via the ellipticity ψ induced on a linearly polarized light
propagating in the birefringent vacuum:

ψ = πkCM
LB

λ
B2 sin2θP, (1.3)

where λ is the light wavelength, LB is the path length in the magnetic field, and θP = 45◦ is the
angle between the light polarization and the birefringence axis. This equation clearly shows that
the critical experimental parameter is the product B2LB. In order to increase the ellipticity to be
measured, we use an optical cavity to store light in the magnetic field region as long as possible.
The total acquired ellipticity Ψ is linked to the ellipticity ψ acquired in the absence of cavity and
depends on the cavity finesse F as Ψ = 2F

π ψ .
In this contribution to Photon 2013, we present a measurement of kCM obtained using the first

generation setup of the BMV (Biréfringence Magnétique du Vide) experiment at the National High
Magnetic Field Laboratory of Toulouse, France (LNCMI-T). The reported value of kCM was ob-
tained with 101 magnetic pulses and a maximum field of 6.5 T. This result corresponds to one of the
most precise measurement ever realized. It is therefore a clear validation of our innovative experi-
mental method. Finally, this kind of experiment can also give limits on axion-like particles coupled
to two photons travelling through a transverse magnetic field. The value of the vacuum magnetic
birefringence is used to extend the excluded region of axion-two photons coupling constant g as a
function of the axion mass ma.

2. Experimental setup

Our experimental setup is described in Refs. [3, 4, 5]. A linearly polarized Nd:YAG laser
beam (λ = 1064 nm) goes through an acousto-optic modulator (AOM) used in double passage
for an adjustment of the laser frequency. It is then injected into a monomode optical fiber before
entering a high finesse Fabry-Pérot cavity of length Lc = 2.27 m, consisting of the mirrors M1 and
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Figure 1: Square of the magnetic field amplitude as a function of time for a maximum field of 6.5 T. Solid
black curve, B2; dashed curve, B2

f .

M2. This corresponds to a cavity free spectral range of ∆FSR = c/2Lc = 65.996 MHz. The laser
passes through an electro-optic modulator (EOM) creating sidebands at 10 MHz. We analyze the
beam reflected by the cavity on the photodiode Phr. This signal is used to lock the laser frequency
to the cavity resonance frequency using the Pound-Drever-Hall method [6]. All the optical devices
from the polarizer to the analyzer are placed in an ultrahigh-vacuum chamber. During operation,
the pressure inside the UHV vessel was about 10−7 mbar.

To measure the ellipticity induced by the Cotton-Mouton effect one needs a transverse mag-
netic field as high as possible. This is fulfilled using pulsed fields delivered by one magnet, named
X-coil, especially designed in our laboratory. The principle of this magnet and its properties are
described in details in Refs. [7, 4]. Data have been taken with a maximum magnetic field of 6.5 T,
over an equivalent length LB of 0.137 m [3], reached within 1.70 ms while the total duration of a
pulse is less than 10 ms as shown in Fig. 1. Moreover, we can remotely switch the high-voltage
connections to reverse B in order to set it parallel or antiparallel to the x direction. The maximum
repetition rate is 6 pulses per hour.

We infer the cavity finesse from the measurement of the photon lifetime τ [3]. We get τ =

1.07 ms and consequentely F = 445000. This corresponds to a cavity linewidth ∆ν = c/2FLc of
148 Hz. This is one of the sharpest infrared cavity in the world [3].

Before entering the Fabry-Pérot cavity, light is polarized by the polarizer P. The beam trans-
mitted by the cavity is then analyzed by the analyzer A crossed at maximum extinction. We extract
both polarizations: parallel and perpendicular to P. The extraordinary ray, whose polarization is
perpendicular to the incident polarization, is detected by the photodiode Phe (power Ie), while the
ordinary ray, whose polarization is parallel to the incident polarization, is detected by Pht (power
It). The ellipticity Ψ(t) induced by the transverse magnetic field is related to the ratio of the ex-
traordinary and ordinary powers as follows:

Ie(t)
It,f(t)

= σ 2 +[Γ+Ψ(t)]2 ≃ σ 2 +Γ2 +2ΓΨ(t) for Ψ ≪ Γ, (2.1)

with σ 2 the polarizer extinction ratio and Γ the total static ellipticity. This static ellipticity is due
to the mirrors’ intrinsic phase retardation [8].
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To measure the polarizer extinction ratio, we first set Γ = 0, with no magnetic field. We get
Ie/It,f = σ2 ∼ 7×10−7. Starting from Γ = 0 and rotating M1 in the clockwise or counterclockwise
direction, we choose the value of Γ as well as its sign determined by CM measurements in nitrogen
and helium gas. The measurement of σ 2 and the adjustment of the value and sign of Γ are done
before each magnetic pulse.

Due to the photon lifetime, the cavity acts as a first order low pass filter, as explained in details
in Ref. [9]. The ellipticity Ψ induced by the external magnetic field is thus Ψ(t) = αB2

f (t), where
the filtered field B2

f is calculated from B2 taking into account the cavity filtering. The time profile of
B2

f is plotted in Fig. 1 with the dashed curve. In particular, we see that the cavity filtering induces an
attenuation and a shift of the maximum. The cavity filtering has also to be applied to It as explained
in details in Refs. [9, 5].

The calculated signals used for the analysis are described in details in Ref. [5]. In order to
extract the ellipticity Ψ(t) from Eq. (2.1), we calculate the following Y (t) signal after each pulse:

Y (t) =
Ie(t)
It,f(t)

− Idc

2 | Γ |
≃ γΨ(t), (2.2)

where γ corresponds to the sign of Γ. The absolute value of the cavity ellipticity is measured a few
milliseconds before each magnetic pulse thanks to the following equation:

|Γ|=

√⟨
Ie(t)
It,f(t)

⟩∣∣∣∣
tΓ<t<0

−σ 2. (2.3)

where tΓ corresponds to the beginning of the analysis and t = 0 to the beginning of the applied
magnetic field.

Signals Y (t) are acquired for both signs of Γ and for both directions of B: parallel to x is
denoted as > 0 and antiparallel is denoted as < 0. This gives four data series: (Γ > 0, B > 0),
(Γ > 0, B < 0), (Γ < 0, B < 0) and (Γ < 0, B > 0). For each series, signals are averaged and
denoted as Y>>, Y><, Y<< and Y<>. The first subscript corresponds to Γ > 0 or < 0 while the
second one corresponds to B parallel or antiparallel to x.

3. Data analysis and results

A few milliseconds after the beginning of the pulse a perturbation due to the sound propagating
from the coil to the cavity mirrors induces an ellipticity noise which degrades our sensitivity. To
avoid this we stop the analysis at t = 3.1 ms. Symmetrically, we start the analysis at tΓ =−3.1 ms.

From the 101 pulses, we calculate the signals Y>>, Y><, Y<<, and Y<>, denoted Yj with j =>>

, ><, >>, <>. They correspond to the average of the Y (t) for each of the four series. The Yj

uncertainties are calculated at each time ti as ∆Yj(ti)=σj(ti)/
√

Nj, with σj(ti) the standard deviation
of the Yj(ti) distribution and Nj the number of shots for the j series.

If no systematic effects affect the experiment, we can fit the Yj(t) averaged signals by γαB2
f (t).

The Cotton-Mouton constant kCM is finally deduced from the measured experimental parameters
as follows [3]:

kCM =
α

4πτ∆FSR
λ
LB

1
sin2θP

. (3.1)
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Actually, as explained in details in Ref. [5], one has to consider systematic effects that mimic
the CM effect we want to measure. We thus derive a more general expression taking into account
the symmetry properties of Yj towards experimental parameters:

Y>> = a>>S+++b>>S+−+ c>>S−−+d>>S−+,

= a>>S+++b>>S+−+ c>>S−−+Ψ,

Y>< = a><S++−b><S+−− c><S−−+d><S−+,

= a><S++−b><S+−− c><S−−+Ψ,

Y<< = a<<S++−b<<S+−+ c<<S−−−d<<S−+,

= a<<S++−b<<S+−+ c<<S−−−Ψ,

Y<> = a<>S+++b<>S+−− c<>S−−−d<>S−+,

= a<>S+++b<>S+−− c<>S−−−Ψ.

The S functions correspond to a given symmetry towards the sign of Γ and the direction of B.
The first subscript + (resp. −) indicates an even (resp. odd) parity with respect to the sign of
Γ. The same convention is used for the second subscript corresponding to B. CM effect signal
contributes to S−+ since it depends on the cavity birefringence Γ and on the square of the magnetic
field amplitude as shown in Eqs. (1.3) and (2.2). We can thus replace dS−+ by γΨ.

The S functions can be extracted with a linear combination of Yj as follows:

J1 ≡ Y>>+Y><+Y<<+Y<>

4
,

= a S+++∆b1 S+−+∆c1 S−−+∆d1 S−+,

J2 ≡ Y>>−Y><−Y<<+Y<>

4
,

= ∆a2 S+++b S+−+∆c2 S−−+∆d2 S−+,

J3 ≡ Y>>−Y><+Y<<−Y<>

4
,

= ∆a3 S+++∆b3 S+−+ c S−−+∆d3 S−+,

J4 ≡ Y>>+Y><−Y<<−Y<>

4
, (3.2)

= ∆a4 S+++∆b4 S+−+∆c4 S−−+d S−+.

J1(t), J2(t), J3(t) and J4(t) are plotted in Fig. 2. Their uncertainties are calculated from the Yj

uncertainties. The weighting parameters a, b, c and d depend on the experimental adjustment from
pulse to pulse and from day to day. Their relative variations are small: ∆a/a,∆b/b,∆c/c,∆d/d ≪
1. ∆a, ∆b and ∆c are mainly due to the Γ variation from one shot to another.

We thus write:

J1 ≃ a S++,J2 ≃ b S+−,J3 ≃ c S−−,J4 ≃
∆a4

a
J1 +

∆b4

b
J2 +

∆c4

c
J3 +Ψ. (3.3)

We then calculate:

J′4 ≡ J4 −
[

∆a4

a
J1 +

∆b4

b
J2 +

∆c4

c
J3

]
≃ Ψ, (3.4)
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Figure 2: Time evolution of J1, J2, J3 and J4 (dark grey curve) and their uncertainties at 3σ confidence
level (light grey).

which corresponds to the Cotton-Mouton signal.
This method has been validated measuring Helium gas magnetic birefringence as reported in

ref. [5]. In fig. 3 we show the J4 signal obtained for 162 10−3 atm of Helium gas.

15x10
-6

10

5

0

J 4

1086420-2
time (ms)

Figure 3: Gray: Time evolution of J4 for a pressure of 162×10−3 atm. Black dashed curve: fit with αB2
f .

White solid curve: fit with αB2
f + corrections due to the relative variations of weighting parameters a, b, c

and d, the value of α being fixed at the value obtained with the previous fit αB2
f .

Nevertheless, as we see in Fig. 2, the major component of J′4 is not αB2
f but a supplementary

systematic effect.
The setup is subject to several mechanical resonances which can be excited both by the envi-

ronment and the magnetic field. The latter could thus trigger a mechanical oscillation of the setup
at t = 0. We try to fit J′4 by a sine function starting at t = 0. The fit gives a frequency of (180±3) Hz
and it is superimposed to J′4 in Fig. 4. We finally fit the residues by αB2

f and we obtain:

knoisefloor
CM = (−0.9±6.2)× 10−21 T−2, (3.5)

at 3σ confidence level. This corresponds to our noise floor, which is half the one of the PVLAS
collaboration in 2012 obtained with an integration time of 8192 s [10].

In order to assess more precisely the physical origin of the systematic effect, we look to the
power spectral density of Ψ. We find several resonances at 177 Hz, 200 Hz and above. The signal J′4
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Figure 4: Time evolution of J′4 and its residues (dark grey). The 3σ uncertainties are superimposed in light
grey. Black curve: fit with a sine function at 180 Hz.

is then fitted by a sine functions but with the frequency fixed to each of the resonance frequencies.
The best fit, corresponding to the best χ2, is obtained for 177 Hz, which is compatible with the
frequency given by the previous fit. Fitting the residues by αB2

f gives our final value for the CM
constant:

kCM = (5.1±6.2)×10−21 T−2, (3.6)

at 3σ confidence level.
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Figure 5: Time evolution of J′4 residues. The 3σ uncertainties are superimposed in light grey. Black curve:
fit with αB2

f function.

Our kCM value is compatible with the expected one for the vacuum. We compare it to the other
published values in Fig. 6. Our value is the most precise value ever realized.

Actually, after the theoretical calculations in the 70s, a first measurement of the kCM value was
published by the BFRT collaboration [11]. It was based on a superconducting magnet providing a
maximum field of 3.9 T, and a multipass optical cavity. Spurious signals were always present (see
Table V(b) in [11]). Final results gave kCM = (2.2±0.8)×10−19 T−2 at 3σ confidence level for 34
refections inside the cavity, and kCM = (3.2±1.3)×10−19 T−2 for 578 reflections. In 2008 a new
measurement was published by the PVLAS collaboration using a Fabry-Pérot optical cavity and a
superconducting magnet providing a 2.3 T field: kCM = (1.4± 2.4)× 10−20 T−2 at 3σ [12]. The
same experiment at 5 T gave kCM = (2.7± 1.2)× 10−20 T−2 at 3σ . More recently a new version
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Figure 6: Comparison of reported absolute values of the vacuum magnetic linear birefringence and their
uncertainties represented at 3σ . See text for details.

of the PVLAS apparatus based on two 2.5 T permanent magnets and a Fabry-Pérot optical cavity
reached a noise floor corresponding to kCM = 1.3× 10−20 T−2 at 3σ , but "only when no spurious
signal was observed" [10]. All these measurements are summarized in Fig. 6.

4. Axions

The study of photon propagation in transverse magnetic fields is also a powerful test of physics
beyond the standard model. In particular, it has been predicted that photons in a magnetic field
could oscillate via Primakoff effect into weakly interacting massive particles (WIMPs) like the
axion. This hypothetical particle was introduced by Peccei and Quinn to solve the "strong CP
problem" [13] and it could be a possible constituent of dark matter.

Most stringent limits on axion or axion-like particles parameters, essentially its mass ma and
the coupling constant g of axion-like particle to two photons, are given by astrophysical obser-
vations [14, 15]. But these limits depend on assumptions for the celestial sources. On the other
hand, purely terrestrial experiments, where axions are produced and then detected on earth, are
less sensitive but much more reliable since the experimental limits do not depend on any physical
model.

Three kinds of purely terrestrial experiments exist. The first one corresponds to the “light
shining through the wall” experiment [16]. Up to now, the best limits have been obtained at DESY
by the ALPS collaboration [17], depicted as the grey line in Fig. 7. The area above the curve
corresponds to the excluded region. The second kind of experiments consists in measuring the
vacuum magnetic dichroism, i.e. the light absorption in vacuum depending on the light polarisation
due to the presence of a transverse magnetic field. The most advanced experiment is performed by
the PVLAS collaboration [12, 10].

The third kind of experiment, complementary to the first ones, consists in measuring the vac-
uum magnetic birefringence, as described in this paper. Indeed, photon oscillations into a virtual
massive particle like axions also induce an ellipticity signal in such an apparatus [18]. This ellip-
ticity can be written as [11]:

Ψ =
2F
π

∆2
g

2∆osc
LB

(
1− sin[∆oscLB]

∆oscLB

)
, (4.1)
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Figure 7: Limits at 3σ confidence level on the axion-like particle-two photons coupling constant g as a
function of the particle mass ma obtained by purely terrestrial experiments. Excluded regions are above the
line. Solid black line and striped area: our limit; dashed line: limit given by the PVLAS collaboration; grey
line: limit given by the APLS collaboration. See text for details.

with ∆g = gB/2, ∆osc = m2
a/2ω and ω the photon energy. Our current limit obtained in vacuum

and given in Eq. (3.6) corresponds to an ellipticity limit of Ψ < 1.5× 10−8 rad at 3σ confidence
level. The black line and striped area in Fig. 7 corresponds to our current limit. The main advantage
of this experiment is to extend limits for the heavier axion masses. The best limit is obtained at
ma = 3.3 meV with g < 1.9×10−6 GeV−1 at 3σ confidence level.

5. Conclusions and perspectives

We presented the last advances of our BMV apparatus in terms of axion search, and the most
precise measurement of vacuum magnetic birefringence ever realized. Our result validates our
experimental method based on pulsed fields. In particular, it proves that the sensitivity obtained in
a single pulse compensates the loss of duty cycle. To reach the QED value, the needed improvement
is of three orders of magnitude. This is not conceivable with this first-generation experiment. Our
strategy is therefore to increase the magnetic field thanks to the pulsed technology. At the moment,
we have B2LB = 5.8 T2m but we conceptualized and tested a pulsed coil prototype that has already
reached a B2LB higher than 300 T2m. Two coils of this type will be inserted in the experiment in the
near future. This essential milestone really makes the vacuum birefringence measurement within
our reach.
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