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Unified dispersive approach to real and virtual photon-photon scattering B. Moussallam

1. Introduction

There is a persistent discrepancy, at the three sigma level, for the muon anomalous magnetic
momentaµ = (g− 2)/2 between the experimental value [1] and the theoretical one computed
in the standard model (see e.g. [2] for a review). This calls for a careful re-examination of the
parts of the calculation in which the strong interaction is involved. The leading contribution is
associated with the hadronic vacuum polarization (HVP) function, and the contribution fromπ+π−,
proportional to the square of the pion form factor, dominates the HVP unitarity relation. This has
triggered experimental efforts for measuring the pion form factor to high accuracy, in particular,
via the initial-state radiation (ISR) method (see [3, 4] and references therein). In the e+e− →
γπ+π− cross-section, the final-state radiation (FSR) amplitude contributes in additionto the ISR.
In principle, they could be separated experimentally by performing a partial-wave analysis. The
FSR amplitude is also needed for computing theγππ contribution in the HVP unitarity relation.
In practice, the FSR amplitude is often estimated using the scalar QED (sQED) approximation,
which treats the final-state pions as point-like and non-interacting. This approximation ignores,
in particular, the influence of the strongππ S-wave attraction at low energy. A modelling of this
effect using a narrowσ -meson gives surprisingly large results [5]. We discuss here an approach
in which ππ rescattering is treated in the model independent Omnès method [6]. It can be viewed
as a generalization of classic work on theγγ → ππ amplitude [7, 8, 9, 10] and usesγγ scattering
experimental results as constraints. A further generalization to the case oftwo virtual photons is
being studied [11], which will be applied to the light-by-light hadronic contribution to the muon
g−2.

2. Analyticity of partial-waves when q2 6= 0

Unitarity alone leads to the well-known Fermi-Watson phase relation. This relation, however,
has restricted applicability: it applies toγ∗(q2)γ → ππ whenq2 < 4m2

π but not toγ∗(q2)γ → ππ
with q2 > 4m2

π [12]. The Omnès method applies to partial-wave projected amplitudes, it combines
the unitarity relation and analyticity properties. We restrict ourselves here tothe elastic scattering
regions<∼ 1 GeV2 which will limit the applicability of the amplitude to virtualitiesq2 <∼ 1 GeV2.
In the case of two real photons, the partial-wave amplitude is an analytic function of theππ energy
s, except for two cuts, the right-hand cut which lies on[4m2

π ,∞] and the left-hand cut on[−∞,0].
The discontinuity across the right-hand cut is given by the unitarity relations, these have exactly
the same form forγγ andγ∗γ amplitudes. In contrast, the left-hand cuts differ. The main issue is
to properly define this cut and verify that no anomalous threshold is present.

The left-hand cut is associated with singularities of the unprojected amplitude inthe crossed
channels. One firstly has the pion pole in theγ∗π+ → γπ+ amplitude (so-called Born amplitude)
theJ = 0 projection reads,

hBorn
0,++(s,q

2) =
Fv

π (q
2)

s−q2

[ 4m2
π

σπ(s)
Lπ(s)−2q2

]
, Lπ(s) = log

1+σπ(s)
1−σπ(s)

(2.1)

with σπ(s) =
√

1−4m2
π/s. Having q2 6= 0 affects the amplitude through the pion form factor

Fv
π (q

2) but not only. The singularities are modified: the Born amplitude displays a poleats= q2 in
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addition to a left-hand cut. Using theq2+ iε prescription moves the pole away from the right-hand
cut whenq2 > 4m2

π . Secondly, one must consider the cuts associated withγ∗π → nπ → γπ. These
processes are expected to display sharp resonance effects below 1 GeV from the vector mesons
ρ, ω . We may start with a largeNc approximation, where resonances generate simple poles in
γ∗π → γπ (note that scalar mesons, which violate largeNc rules are not allowed in this channel).
Using a resonance chiral Lagrangian, the contributions from a vector meson exchange to the three
independent invariant amplitudes read

AV(s, t,q2) = C̃VFVπ(q2)
[s−4m2

π −4t +q2

t −M2
V

+
s−4m2

π −4u+q2

u−M2
V

]

BV(s, t,q2) = C̃VFVπ(q2)
[ 1

2(t −M2
V)

+
1

2(u−M2
V)

]

CV(s, t,q2) = C̃VFVπ(q2)
[ 1

t −M2
V

− 1

u−M2
V

]
(2.2)

The main difference whenq2 6= 0 is from the kinematics: forγγ → ππ the Mandelstam variables
t, u are negative while forγ∗(q2)→ γππ they lie in the range:[4m2

π ,(
√

q2−mπ)
2]. One must then

take the width of the resonance into account, and this must be done in a way consistent with the
general analyticity properties for, otherwise, the Omnès method would not be applicable. This may
be implemented by using a Källén-Lehmann representation, i.e. by replacing, ineq. (2.2)

1

M2
V −w

−→ B̃WV(w) =
1
π

∫ ∞

4m2
π

dt′
σ(t ′,MV ,ΓV)

t ′−w
, w= t,u (2.3)

One can use for the spectral functionσ(s,MV ,ΓV) e.g. the imaginary part of an ordinary Breit-
Wigner function with an energy dependent width. The functioñBWV has a cut instead of a pole
on the first Riemann sheet, while a pole appears on the second sheet. The cut structure of the
partial-wave projection of the vector-exchange amplitude is illustrated on figs. 1: the left figure
shows that the cut extends into the complex plane and approaches the right-hand cut. The vicinity
of the right-hand cut is illustrated on the right figure. Thanks to the analytic propagator and the
q2+ iε prescription, no intersection actually occurs (it can be shown that the cutcrosses the real
axis at a point strictly below 4m2

π ), which guarantees the absence of an anomalous threshold and
the applicability of the usual Omnès method.

3. The master formula for rescattering

In order to discuss rescattering one considers amplitudes which correspond to definiteππ
isospin,γ∗ → γ(ππ)I , with I = 0,2. They are related to theπ+π− andπ0π0 amplitudes by

(√
2Hc

λλ ′

Hn
λλ ′

)
=


−

√
2
3 −

√
1
3

−
√

1
3

√
2
3


=

(
H0

λλ ′

H2
λλ ′

)
. (3.1)

We consider an Omnès representation for the isospin amplitudes based on twice-subtracted dis-
persion relations i.e. involving two polynomial parameters for each isospinI . These parameters,
which depend onq2, account for the effects of higher mass resonances (like the axial-vector or

3
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Figure 1: Cut structure of a partial-wave projection of the vector-exchange amplitude.

the tensor mesons) not explicitly included as well as the effects of inelasticity inthe higher energy
portions of integrals. Beside the properties of analyticity and elastic unitarity,there are additional
physical constraints that must be imposed. Gauge invariance imposes that the amplitudes minus
the Born term must vanish in the soft photon limit [13] which eliminates one of the parameters for
eachI . The helicity amplitudeH I

++(s,q
2,z), wherez is the cosine of the scattering angle in theππ

CMS, can be written as

H I
++(s,q

2,z) = H I ,Born
++ (s,q2,z)+ ∑

V=ρ,ω
H I ,V
++(s,q

2,z)+H I ,resc
++ (s,q2,z) (3.2)

The last term in eq. (3.2) accounts for the rescattering in theJ = 0 partial-wave, it reads

H I ,resc
++ (s,q2,z) = ΩI

0(s)
{
(s−q2)bI (q2)+sFv

π (q
2)
[s(JI ,π(s,q2)−JI ,π(q2,q2))

s−q2

−q2ĴI ,π(q2)
]
+s ∑

V=ρ,ω
FVπ(q2)

[
sJI ,V(s,q2)−q2JI ,V(q2,q2)

]}
,

(3.3)

whereΩI
0 is the usual Omnès function, given in terms of theππ scattering phase-shiftδ I

0

ΩI
0(s) = exp

[
s
π

∫ ∞

4m2
π

ds′
δ I

0(s
′)

s′(s′−s)

]
(3.4)

andJI ,π , JI ,V are the related integrals (see [6]) involving the partial-wave projections ofthe Born
and the vector-exchange amplitudes respectively (without the form factor term),

JI ,π(s,q2) =
1
π

∫ ∞

4m2
π

ds′

(s′)2(s′−s)
sinδ I

0(s
′)

|ΩI
0(s

′)| h̄I ,π
0,++(s

′,q2)

JI ,V(s,q2) =
1
π

∫ ∞

4m2
π

ds′

(s′)2(s′−s)
sinδ I

0(s
′)

|ΩI
0(s

′)| h̃I ,V
0,++(s

′,q2,mV ,ΓV) , (3.5)

Finally, ĴI ,π = ∂JI ,π(s,q2)/∂sats= q2. One notes that the integrations in eq. (3.5) are well defined
since, as we have argued, the singularities of the partial-wave amplitudes donot overlap with the
integration axis. The other two helicity amplitudesH+−, H+0 are affected by rescattering from
J ≥ 2 partial-waves: we have neglected this effect here since theJ = 2 phase-shiftsδ I

2 are rather
small for energies below 1 GeV.
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Figure 2: Comparison of theγγ → π0π0 cross-sections using the amplitudeHn
++ with J = 0 rescattering

andHn
+− = Hn,V

+−, with experiment.

4. Chiral and experimental constraints

The two arbitrary functionsb0(q2), b2(q2), are constrained by chiral symmetry. In the exact
chiral limit, theγ∗γ amplitudes for producing aπ0 pair satisfies a soft pion theorem: the combina-
tion of the three invariant amplitudesA(s, t)+2q2(B(s, t)−C(s, t)) with t = 0 vanishes ats= 0 for
any value ofq2. In the real world, this corresponds to an Adler zero ats= sA = O(m2

π), depending
on q2, for the helicity amplitudeHn

++ with t = m2
π . The correct chiral behaviour is enforced by

matching the dispersive amplitudes for bothπ0π0 andπ+π− with the corresponding chiral expan-
sion expressions which are known at NLO [14, 15] ats= 0 and small values ofq2. For larger values,
in the rangeq2 <∼ 1 GeV2, the dependence should be dominated by the light vector resonances. In-
troducing the combinationsbn = (−b0+

√
2b2)/

√
3 andbc =−(

√
2b0+b2)/

√
6 corresponding to

theπ0π0 andπ+π− channels, the following parametrization encodes these properties

bn(q2) = bn(0)Fχ(q2)+FR(q2),

bc(q2) = bc(0)+FR(q2)
(4.1)

where

FR(q
2) = βρ(GSρ(q

2)−1)+βω(BWω(q
2)−1) (4.2)

involves the usual Gounaris-Sakurai and Breit-Wigner functions, and

Fχ(q
2) = 12m2

π
[m2

π
q2 L2

π(q
2)+σπ(q

2)Lπ(q
2)+3

]
. (4.3)

is generated from the ChPT matching. In the parametrization (4.1) we used thesame resonance
function forbn andbc i.e. we neglected the resonance contribution tob2. This is justified from the

5
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Figure 3: Experimental results forσ(e+e− → γπ0π0) and our two parameter fit.

fact that the Omnès functions satisfy the inequality|Ω2(s)|<< |Ω0(s)| in the physically relevant re-
gion 4m2

π ≤ s≤ q2 which suppresses the influence ofb2. Thanks to this simplification, determining
the two parametersβρ , βω from σ(e+e− → γπ0π0) allows one to predictσFSR(e+e− → γπ+π−).

The values ofbn(0), bc(0) can be related to the polarizabilities of theπ+ and theπ0 which
parametrize the pion Compton amplitudes at threshold,

(απ0 −βπ0) =
2α
mπ

(
bn(0)−4m2

πC̃ρ0 B̃Wρ(m
2
π)−4m2

πC̃ωBWω(m
2
π)
)

(απ+ −βπ+) =
2α
mπ

(
bc(0)−4m2

πC̃ρ+ B̃Wρ(m
2
π)
)
. (4.4)

The values of the pion polarizabilities are not yet precisely determined experimentally, the status
of the measurement under way at COMPASS is described in [16]. We will use here values com-
patible with the NNLO chiral calculations [17, 18]. Fig. 2 shows the resulting prediction from our
amplitude withq2 = 0 for theγγ → π0π0 cross-section, compared to the experimental results from
refs. [19, 20].

In order to address the case withq2 6= 0 we have yet to specify theq2 dependence of the three
form factors which enter into the expression of the amplitude (3.2) (3.3). The pion form factor, of
course, is known rather precisely from experiment. Some experimental data exist also for theωπ
form factor in two kinematical regions surrounding the peak of theρ meson. TheFρπ form factor,
finally, is more difficult to isolate experimentally thanFωπ , because of the width of theρ. We used
the same type of modelling based on superposition of Breit-Wigner type functions together with
symmetry arguments to fix the parameters. The experimental results for thee+e− → γπ0π0 cross-
sections from the SND and CMD-2 collaborations [21, 22] can be reproduced rather well with our
two-parameter Omnès amplitude. A combined fit to these two data sets gives for the parameters:

βρ = 0.05±0.09 GeV−2

βω = (−0.37±0.09) ·10−1 GeV−2 (4.5)

with χ2/Ndo f = 38/50. Fig.3. shows the experimental and the fitted theoretical cross sections.

6
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channel cross-section (g−2)/2

γπ+π− |HBorn|2 41.9×10−11

γπ+π− (HBorn)∗HV+resc (1.31±0.30)×10−11

γπ+π− |HV+resc|2 (0.16±0.05)×10−11

γπ0π0 |HV+resc|2 (0.33±0.05)×10−11

Table 1: Central values of theππγ contributions (see eqs. (5.2) and (5.4) in the text) to the muong−2 from
the integration region

√
q2 ≤ 0.95 GeV.

5. Application to the ππγ contributions to the muon g−2

The contribution of the hadronic vacuum polarization function to the muong− 2 has been
expressed a long time ago by using the analyticity property of the polarization function [23, 24]. It
can be written in terms of physicale+e− → hadronscross sections

g−2
2

∣∣∣∣
HVP

=
1

4π3

∫ ∞

4m2
π

dq2Kµ(q
2) ∑

hadrons

σe+e−→hadrons(q
2) (5.1)

(see e.g. [2] for the explicit expression of the functionKµ(q2)). A class ofO(α) radiative cor-
rections to the HVP contribution is generated by simply adding in eq. (5.1) the cross sections for
e+e− → hadrons+ γ, where the photon is emitted in the final state. The lightesthadrons+ γ state
is π0γ which makes a contribution(g−2)/2|π0γ = (44.2±1.9) ·10−11 (see [25]) of a size com-
parable to the error in the measurement ofaµ . The next to lightest states areππγ. When charged
pions are present, the cross-sectionσFSR

e+e−→hadrons+γ is infrared divergent: in the case ofπ+π−γ
the divergence is easily seen to originate from the 1/(q2−s)2 denominator in|HBorn

λλ ′ |2. As is well
known, this divergence is cancelled by part of theO(α) radiative corrections to thee+e− → π+π−

cross-section. Collecting these pieces together, one can then re-write theππγ contribution to the
muong−2 as a sum of three infrared finite quantities

g−2
2

∣∣∣∣
ππγ

=
1

4π3

∫ ∞

4m2
π

dq2Kµ(q
2)
(

σsQED
e+e−→π+π−γ(q

2)+ σ̂e+e−→π+π−γ(q
2)+σe+e−→π0π0γ(q

2)
)

(5.2)
where

σsQED
e+e−→π+π−γ =

α3

3q2 σ3
π (q

2)|Fv
π (q

2)|2×η(q2) (5.3)

(see e.g. [2] for the explicit expression of the functionη) andσ̂ is defined by simply removing the
contribution proportional to the Born amplitude squared from the charged pions cross-section (σ̂
is thus not necessarily positive)

σ̂e+e−→π+π−γ =
α3

12(q2)3

∫ q2

4m2
π

ds(q2−s)σπ(s)
∫ 1

−1
dz(Sc

+++Sc
+−+Sc

+0) (5.4)

where

Sc
λλ ′ = 2Re

[
(HBorn

λλ ′ )
∗(Hc,V

λλ ′ +Hc,resc
λλ ′ )

]
+
∣∣∣Hc,V

λλ ′ +Hc,resc
λλ ′

∣∣∣
2
. (5.5)

The contributions to the muong−2, restricting the integration range in eq. (5.2) to
√

q2 ≤ 0.95
GeV, within the domain of validity of the model, are shown in table 5. As compared toprevious

7
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work, we find for the contribution linear inHBorn (second line in the table) is positive, unlike the
result of ref. [26]. This difference is partly due to the effect of theππ rescattering, which was not
taken into account in ref. [26] and partly to the somewhat larger integrationrange used in that work.
The sum of the last two lines in the table can be compared with the calculation of ref. [5] based
on an estimate of thee+e− → γσ cross-section. We find that theσ -meson approximation toππ
rescattering in the present context, leads to an overestimate by a factor of three approximately.

6. Conclusions

We have proposed a theoretical model of the amplitude for producing a pionpair from one
real plus one virtual photon. It combines the resonance chiral Lagrangian approach, which is used
to describe resonance effects in the crossed channelsγ∗π → γπ and the Omnès approach based
on unitarity/analyticity for treating theππ final-state interaction effects in the elastic regime. Our
expression is a generalization of former work on photon-photon scattering [7, 8, 9, 10] and it
reproduces theγγ → ππ amplitudes in the limit where the virtualityq2 vanishes. We have shown
that the usual Omnès formalism can be applied even in the regionq2 > 4m2

π where the left and
right-hand cuts seem to overlap, provided appropriate analytic forms of the resonance propagators
in the crossed channels are used.

As an application, we have reconsidered the contribution from theγππ states in the hadronic
vacuum polarization to the muong−2 in the region

√
q2 < 0.95 GeV and find some differences

with several former approaches. However, in this region, the contribution is dominated byγπ+π−

and very well approximated by the sQED formula. Still, it would be of interest tobe able to extend
the integration range somewhat since one expects a kinematical increase ofthe FSR cross-section
when

√
q2 >mV +mπ (with V = ρ,ω , see fig. 3). This would necessitate to account for rescattering

in D-waves as well as properly account forππ−KK̄ inelasticity in the final stateS-wave interaction.

Acknowledgements: Work supported in part by the European Community-Research Infrastructure Inte-

grating Activity "Study of Strongly Integrating Matter" (acronym HadronPhysics3)
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