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We report on a recent calculation of the generalized parton distributions (GPDs) of the photon

when the momentum transfer in the transverse direction is non-zero. We use an overlap repre-

sentation of the photon GPDs in terms of the photon light-front wave functions. We calculate the

GPDs at leading order in electromagnetic couplingα and zeroth order in strong couplingαs. We

consider also the case when the helicity of the photon is flipped. Fourier transform of the GPDs

with respect to the transverse momentum transfer gives the parton distributions of the photon in

impact parameter space.
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1. Introduction

The partonic substructure of the photon play an important role in high energy scattering ex-
periments where the virtuality of the photon involved is very large. The pointlike component of
the photon structure function, which is relevant in processes likee+e− annihilation and photopro-
duction, can be calculated perturbatively. A striking feature of the photon parton distribution is
that they have logarithmic scale dependence already at zeroth order of the strong coupling constant
unlike the parton distributions of the nucleon. The photon structure functions are now well known
both theoretically and experimentally. In [1] the authors have considered deeply virtual Compton
scattering on a photon targetγ∗γ → γγ in the kinematical region of large center-of-mass energy,
large virtuality (Q2) but small squared momentum transfer(−t) from the initial to final photon.
They interpreted the results in terms of the generalized parton distributions (GPDs) of the pho-
ton at leading logarithmic order, in analogy with the GPDs ofthe proton. At leading order inα
and zeroth order inαs the GPDs of the photon depend on the scale logarithmically. These can be
calculated perturbatively, unlike the proton GPDs, and they can act as theoretical laboratories to
understand the basic properties of GPDs like polynomialityand positivity. In [2] the GPDs of the
photon have been used to investigate the analyticity properties of DVCS amplitudes and related
sum rules of the GPDs. Recently we have investigated the GPDsof the photon using overlaps of
light-front wave functions (LFWFs) of the photon. We extended the study in [1] to a more general
kinematics when the momentum transfer between the initial and the final photon also has a trans-
verse component. We have shown that in this kinematics Fourier transform of the photon GPDs
give impact parameter dependent parton distribution of thephoton in transverse position space. As
is known in the DVCS process involving a proton, the helicityof the proton may or may not flip.
When the helicity of the proton is flipped, the DVCS amplitudeis given in terms of the GPDE. The
flip needs non-zero orbital angular momentum (OAM) of the overlapping LFWFs of the proton,
and is not possible unless there is non-zero momentum transfer in the transverse direction. When
the nucleon is transversely polarized, this results in a distortion in the parton distributions in the
impact parameter space. We have shown that the photon GPDs where the helicity of the photon is
flipped are related to a similar distortion of the parton distributions of the photon in the transverse
impact parameter space which is due to the non-vanishing OAMof the partonic constituents of the
photon.

2. GPDs of the photon without helicity flip

The GPDs for the photon can be written as the following off-forward matrix elements [1]:

Fq =

∫

dy−

8π
e

−iP+y−
2 〈γ(P′,λ ′) | ψ̄(0)γ+ψ(y−) | γ(P,λ )〉;

F̃q =

∫

dy−

8π
e

−iP+y−
2 〈γ(P′,λ ′) | ψ̄(0)γ+γ5ψ(y−) | γ(P,λ )〉. (2.1)

Fq contributes when the photon is unpolarized andF̃q is the contribution from the polarized photon.
We have chosen the light-front gaugeA+ = 0 and used light-front coordinates. In this section, we
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takeλ ′ = λ so that there is no helicity flip of the photon. We use the Fock space expansion of a
real photon of momentumP and helicityλ , which can be written as,

| γ(P,λ )〉 =
[

a†(P,λ ) | 0〉+ ∑
σ1,σ2

∫

{dk1}
∫

{dk2}
√

2(2π)3P+δ 3(P− k1− k2)

φ2(k1,k2,σ1,σ2)b
†(k1,σ1)d

†(k2,σ2) | 0〉
]

(2.2)

{dk} =
∫ dk+d2k⊥√

2(2Π)3k+
, φ2 is the two-particle (qq̄) light-front wave function (LFWF) andσ1 andσ2

are the helicities of the quark and antiquark. The wave function can be expressed in terms of

Jacobi momentaxi =
k+i
P+ andq⊥i = k⊥i − xiP⊥. These obey the relations∑i xi = 1,∑i q⊥i = 0. The

boost invariant photon LFWFs are given byψ2(xi,q⊥i ) = φ2
√

P+. ψ2(xi,q⊥i ) can be calculated
order by order in perturbation theory [3]. The above off-forward matrix elements can be calculated
analytically using these LFWFs [4] and can be written as:

Fq = ∑
q

αe2
q

4π2

[

((1− x)2+ x2)(I1+ I2+LI3)+2m2I3
]

θ(x)θ(1− x)

−∑
q

αe2
q

4π2

[

((1+ x)2+ x2)(I′1+ I′2+L′I′3)+2m2I′3
]

θ(−x)θ(1+ x) (2.3)

Here the sum indicates sum over different quark flavors;L =−2m2+2m2x(1−x)− (∆⊥)
2
(1−x)2,

L′ =−2m2−2m2x(1+ x)− (∆⊥)
2
(1+ x)2; the integrals can be written as,

I1 =
∫

d2q⊥

D
= πLog

[ Λ2

µ2−m2x(1− x)+m2

]

= I2

I3 =
∫

d2q⊥

DD′ =

∫ 1

0
dα

π
P(x,α ,(∆⊥)2

)
(2.4)

whereD = (q⊥)
2−m2x(1− x)+m2 andD′ = (q⊥)

2
+(∆⊥)

2
(1− x)2−2q⊥ ·∆⊥(1− x)−m2x(1−

x)+m2, andP(x,α ,(∆⊥)
2
) = −m2x(1− x)+m2+α(1−α)(1− x)2(∆⊥)

2
. At zeroth order inαs

the results depend on the scale logarithmically.µ is a lower cutoff on the transverse momentum,
which can be taken to zero as long as the quark mass is nonzero.

For the antiquark contributions we have similar integrals

I′1 =
∫

d2q⊥

H
= πLog

[ Λ2

µ2+m2x(1+ x)+m2

]

= I′2

I′3 =
∫

d2q⊥

HH ′ =
∫ 1

0
dα

π
Q(x,α ,(∆⊥)2

)
(2.5)

whereH = (q⊥)
2
+m2x(1+ x)+m2 andH ′ = (q⊥)

2
+(∆⊥)

2
(1+ x)2+2q⊥ ·∆⊥(1+ x)+m2x(1+

x)+m2, andQ(x,α ,(∆⊥)
2
) = m2x(1+ x)+m2+α(1−α)(1+ x)2(∆⊥)

2
.

For polarized photon the GPD̃Fq can be calculated from the terms of the formε2
λ ε1∗

λ − ε1
λ ε2∗

λ
[1]. We consider the terms where the photon helicity is not flipped. This can be written as,

F̃q = ∑
q

αe2
q

4π2

[

(x2− (1− x)2)(I1+ I2+LI3)+2m2I3
]

θ(x)θ(1− x)
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+∑
q

αe2
q

4π2

[

(x2− (1+ x)2)(I′1+ I′2+L′I′3)+2m2I′3
]

θ(−x)θ(1+ x) (2.6)

In analogy with the impact parameter dependent parton distribution of the proton [5], we introduce
the same for the photon. By taking a Fourier transform with respect to the transverse momentum
transfer∆⊥ we get the GPDs in the transverse impact parameter space.

q(x,b⊥) =
1

(2π)2

∫

d2∆⊥e−i∆⊥·b⊥Fq

=
1

2π

∫

∆d∆J0(∆b)Fq; (2.7)

q̃(x,b⊥) =
1

(2π)2

∫

d2∆⊥e−i∆⊥·b⊥ F̃q

=
1

2π

∫

∆d∆J0(∆b)F̃q; (2.8)

whereJ0(z) is the Bessel function;∆ = |∆⊥| andb = |b⊥|. In the numerical calculation, we have
introduced a maximum limit∆max of the ∆ integration which we restrict to satisfy the kinematics
−t << Q2 [6, 7, 8, 9]. q(x,b⊥) gives the distribution of partons in this case inside the photon in
the transverse plane. Like the proton, this interpretationholds in the infinite momentum frame
and there is no relativistic correction to this identification because in light-front formalism, as
well as in the infinite momentum frame, the transverse boostsact like non-relativistic Galilean
boosts.q(x,b⊥) gives simultaneous information about the longitudinal momentum fractionx and
the transverse distanceb of the parton from the center of the photon and thus gives a newinsight
to the internal structure of the photon. The impact parameter distribution for a polarized photon is
given byq̃(x,b⊥).
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Figure 1: (Color online) Plots of impact parameter dependent pdfq(x,b) andq̃(x,b) vsb for fixed values of
x where we have takenΛ = 20 GeV and∆max= 3 GeV where∆max is the upper limit in the∆ integration.b
is in GeV−1 andq(x,b) andq̃(x,b) are in GeV2 .

Figs 1(a) and 1(b) show the impact parameter dependent parton distributionsq(x,b) andq̃(x,b)
for unpolarized and polarized photons respectively. We took the momentum transfer to be purely
in the transverse direction. We took the quark mass to be non-zero and equal tom = mq = 3.3
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MeV; Λ = Q = 20 GeV;µ = 0 and∆max = 3.0 GeV, where∆max is the upper limit of the Fourier
transform. The smearing inb⊥ space reveals the partonic substructure of the photon and its shape
in transverse space. In the ideal definition of the Fourier transform the integration over the∆⊥

should be from zero to infinity. In this case the∆⊥ independent terms in the integrand would
give δ 2(b⊥) in the impact parameter space. This means when there is no momentum transfer in
the transverse direction, the photon behaves like a point particle in transverse position space. The
distribution in transverse space is revealed only when there is non-zero momentum transfer in the
transverse direction. The parton distributions for the polarized photon changes sign atx = 1/2, at
this point the GPD and the ipdpdf become zero. These parton distributions for the polarized photon
are approximately symmetric aboutx = 1/2 in b space. For fixedx, q̃(x,b) becomes broader as
a function ofb asx increases tillx = 1/2. For larger values ofx, it changes sign. We have also
checked that at larger values of∆max the distributions are sharper inb space. The photon GPDs
show qualitatively the same behaviour when the momentum transfer has both longitudinal and
transverse components [10].

3. Helicity Flip Photon GPDs

In this caseλ ′ 6= λ . Our calculations show that at leading order there is only one helicity flip
photon GPD. This can be expressed in terms of the two-particle LFWFs of the photon. As the
photon has spin one, to flip its helicity, one of the overlapping LFWFs should have orbital angular
momentum contribution of two units.

The transverse polarization vector of the photon can be written as :

ε⊥
± =

1√
2
(∓1,−i) (3.1)

We extract the GPD that involves a helicity flip of the target photon from the non-vanishing co-
efficient of the combination(ε1

+1ε1∗
−1+ ε2

+1ε2∗
−1). Using the overlap formula in terms of the LFWFs,

the helicity flip photon GPD can be calculated and has the form[11]

E1 =
αe2

q

2π2 x(1− x)
[

I1− (1− x)I2
]

. (3.2)

The integrals are given by :

I1 = ((∆1)
2− (∆2)

2
)π(1− x)2

∫ 1

0
dq

(1−q)2

B(q)
; I2 = ((∆1)

2− (∆2)
2
)π(1− x)

∫ 1

0
dq

(1−q)
B(q)

;(3.3)

where

B(q) = m2
(

1− x(1− x)
)

+q(1−q)(1− x)2(∆⊥)
2
. (3.4)

∆1 and∆2 are thex andy components of∆⊥ respectively.

Similar to the GPDE of a spin 1/2 particle for example a dressed electron/quark [8], the
helicity flip photon GPD has no logarithmic scale dependent term. From the expressions above, we
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(a) (b)

Figure 2: (Color online) Plots ofq1(x,b⊥) vsb1,b2 for different values ofx and at∆max = 4.0 GeV.

define the parton distributions [5] with the helicity flip of the photon in transverse impact parameter
space as:

q1(x,b
⊥) =

1
4π2

∫

d2∆⊥e−i∆⊥·b⊥E1(x,∆⊥); (3.5)

wheret =−(∆⊥)
2

andb⊥ is the transverse impact parameter conjugate to∆⊥. One obtains :

q1(x,b
⊥) =

1
4π2

∫

d2∆⊥e−ib⊥·∆⊥
((∆1)

2− (∆2)
2
) f (x)Q(x, t), (3.6)

where

f (x) =
αe2

q

2π
x(1− x)3 , Q(x, t) =

∫ 1

0

dq
B(q)

((1−q)2− (1−q)); (3.7)

Figs 2(a) and 2(b) show plots of the helicity flip photon GPDs in impact parameter spaceq1(x,b) vs
b1 andb2 for a fixed value of∆max and two different values ofx. The magnitude of the peak depends
on x. q1(x,b) has a quadrupole structure, as can be seen in the plots. This structure is expected as
to flip the helicity of a spin one object, one needs a LFWF with orbital angular momentum of two
units.

4. Conclusion

In this talk, I have reported a recent calculation of the generalized parton distributions of the
photon. Extending the calculations of [1], from the kinematics of zero∆⊥ and non-zeroζ , we
calculated the photon GPDs for non-zero∆⊥, at leading order inα and zeroth order inαs. The
GPDs where the helicity of the photon is not flipped are logarithmically dependent on the scale.
Taking the Fourier transform of the GPDs with respect to∆⊥ we get the parton distributions of the
photon in impact parameter space. The helicity flip photon GPDs show the expected quadrupole
structure in impact parameter space.
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