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Off-shell string-inspired methods (OSSIM) calculate off-shell QCD Green’s functions using
Schwinger-Feynman proper-time techniques, always in the background field method (BFM)
Feynman gauge for technical convenience, and so far only at one loop. We already know that
these results are gauge-invariant, because this gauge realizes the prescriptions of the Pinch Tech-
nique (PT), a Feynman-graph formulation for any gauge, but the idea of the first exercise is to
show this directly in OSSIM. In this exercise we extend proper-time OSSIM beyond the BFM
Feynman gauge so that one can apply PT algorithms, and show that the intrinsic PT is equivalent
to resolving ambiguities in OSSIM in other gauges. In the second exercise we use forty-year-old
rules of the author and Tiktopoulos for expressing loop integrals with numerator momenta directly
in terms of Feynman parameters after momentum integration (the goal of OSSIM) and show that
these rules elegantly and with economy of effort give rise, at least at one loop, to standard OSSIM
algorithms. In the third exercise we apply world-line techniques to the problem of the breaking
of adjoint strings, requiring a non-perturbative treatment that in the end reduces to a variant of the
Schwinger result for production of e+− e− pairs in an electric field. This generalizes OSSIM to
non-perturbative processes.
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Three easy exercises John Cornwall

1. Introduction

On-shell string-inspired techniques [1] are powerful algorithms to do the momentum-space
integrals of multi-leg multi-loop QCD S-matrix elements, yielding simpler integrals over Feynman
parameters. Early on, Bern and Dunbar [2] realized that the power of the string-inspired methods
for a d = 4 NAGT relied only loosely on the actual machinery of string theory, which is designed
to accommodate an infinity of states of higher and higher spin in critical dimensions such as 10 and
26. In fact, the string-inspired methods could be found directly from field theory itself [2, 3], using
as a basic tool Feynman-Schwinger proper-time methods. More recently off-shell string-inspired
methods (OSSIM) have been used [3, 4] for elegant calculations of off-shell QCD amplitudes with
proper-time methods. Going off-shell raises the crucial issue of possible gauge dependence of these
amplitudes.

For reasons of technical simplicity OSSIM always use the background field method (BFM)
Feynman gauge. (We do not have space to discuss strictly string-theoretic arguments [5] that a
natural extension to off-shell of string-theoretic methods for on-shell field theory amplitudes does
yield the BFM Feynman gauge.) As it turns out, OSSIM amplitudes in this gauge are in fact gauge-
invariant because they coincide with gauge-invariant amplitudes constructed with the principles
of the Pinch Technique (PT) [6 – 9], based on a rearrangement of Feynman graphs in an S-matrix
element, so asking whether OSSIM amplitudes are gauge-invariant has already been answered,
although indirectly.

Nevertheless, in our first exercise we investigate how to formulate OSSIM on its own terms
(proper time) in an Rξ gauge, and how to apply the PT1. In this connection, we can quote Feynman
[11] about his work on path-integral quantum mechanics:

There are, therefore, no fundamentally new results. However, there is a pleasure in
recognizing old things from a new point of view.

In this paper, after a quick review of the PT, of OSSIM, and of their relationships, in the first
exercise we extend OSSIM proper-time technology to an arbitrary gauge, and show that applying
the so-called intrinsic PT is a way of removing ambiguities in the proper-time integrand for a gen-
eral Rξ gauge. In the second exercise, we use 40-year-old algorithms [12] for expressing a Feynman
graph with arbitrary momentum dependence in the numerator in terms of Feynman parameters af-
ter momentum integrations are done, and show that (at least at one loop) the results are as elegant
and effective as OSSIM. The third exercise shows how to use OSSIM to make gauge-invariant
estimates of the tunneling probability for adjoint string breaking.

2. A quick review of the Pinch Technique

Although the PT is well-known we give a short review in order to set notation and emphasize
certain similarities with OSSIM. The claim of the PT is that with it one can reassemble parts of
various off-shell Feynman graphs having different numbers of external legs (but the same number
of loops) so that the result is a new N-point function that is completely gauge-invariant.

1It has been noted [10] that the one-loop three-gluon vertex function calculated by OSSIM in the BFM Feynman
gauge gives precisely the results of the PT [8].
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pα

k1µ k2ν

qµ (p + q)ν
q − k1

Figure 1: A representative graph for illustrating the PT.

Throughout this paper we work in Euclidean space. To find, say, the one-gluon-loop proper
PT self-energy [7, 6] consider one of the graphs in the qq→ qq S-matrix element of (Fig. 1)2.
Because it is part of an S-matrix element, all quarks are on-shell. For future reference, we call the
gluon not in a loop a background (B) gluon; the other two are quantum gluons (Q). For both the PT
and OSSIM it is useful to decompose the bare BQQ three-gluon vertex Γ of Fig. 1 into three parts,
only two of which are used in OSSIM. But the third part has all the complications that bring into
question the gauge invariance of OSSIM. In studying gauge invariance nothing is lost, but much
simplicity is gained, by working only with the Feynman gauge, and we give the decomposition
only for this special case; for the general case, see [6]. The three-gluon vertex in the figure is, aside
from a group-theoretic factor:

Γαµν(p,k1,k2) = (k1 + k2)αδµν − (k2 + p)µδαν +(p− k1)νδαµ . (2.1)

Decompose it into convective, spin, and pinch terms:

Γαµν(p,k1,k2) = Γ
C
µνα +Γ

S
αµν +Γ

P
αµν (2.2)

Γ
C
αµν = (k1 + k2)αδµν , Γ

S
αµν =−2pµδνα +2pνδµα

Γ
P
αµν = −k2νδµα − k1µδνα .

Here ΓC is the convective vertex, independent of the quantum-field spin; ΓS is the spin generator of
the quantum field (akin to σµν/2 for fermions); and ΓP is the pinch part of the vertex that triggers
the Ward identities defining the PT. It, and only it, has longitudinal momenta in it. In the BFM

2For comparison with standard OSSIM notation it is convenient to choose p, k1 as ingoing, but k2 as outgoing at
the three-gluon vertex.
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pα

Figure 2: Pinch parts come from longitudinal gluon momenta triggering Ward identities that replace quark
lines by ±1.

Feynman gauge, the BQQ bare vertex coupling two quantum gluons to one background gluon is
just ΓF ≡ ΓC + ΓS; there is no pinch part. This is why the BFM Feynman gauge is special for the
PT: No pinches occur. Moreover, on the B line the vertex ΓF obeys a QED-like Ward identity.
(Note that this gauge has Feynman rules for ghosts and four-gluon vertices that differ from those
of the non-background Feynman gauge.)

The pinch vertex parts of Eq. (2.2 generate Slavnov-Taylor identities. For Fig. 1 this reduces
to simple Ward identities such as:

k1µγµ = S−1(q+ k1)−S−1(q)→ S−1(q+ k1); (2.3)

the on-shell inverse propagator vanishes. The remaining propagator cancels (pinches out) the prop-
agator labeled q + k1, leaving only a factor 1, so that the pinch part of Fig. 1 yields a graph with
the topology shown in Fig. 2. In general, pinch parts replace internal quark lines by ±1. Note
that these former contributions to a three-point vertex have become propagator parts; interpreted
as proper self-energy parts, they have a factor of an inverse gluon propagator ∆−1(p1 + p2). That
is, to define a proper (one-particle irreducible, or 1PI) gluon self-energy, one needs to insert the
unit product 1 = ∆−1∆ of a gluon inverse propagator and the propagator between the new vertex
induced by pinching and the quark vertex, and associate the inverse propagator with the pinch part.
In fact, all pinch parts carry this inverse propagator factor, which is the basis of the intrinsic pinch
technique. It is easy to check that the group-theoretic coefficient, ignored so far, always involves a
commutator [Ta,Tb] of the generators of whatever group representation the external on-shell parti-
cles carry.

The final result of these manipulations is that the sum of the conventional self-energy parts
plus the pinch parts of Fig. 2 yields a gauge-invariant 1PI BB proper gluon self-energy.

Both the PT and OSSIM use polarization vectors for off-shell background gluons (the gluon
of momentum p in Fig. 1), satisfying ε(p) · p = 0 even though p2 6= 0 . Such a background gluon
of momentum p couples to ū(p + q)γµu(q) ≡ εµ(p;q) where the spinors are on-shell. (One is
reminded of the fermion-antifermion polarization vectors of on-shell algorithms [13, 14].) After
pinching (which removes internal quark lines), this type of polarization vector is generated for
Fig. 1. That the polarization vectors are transverse off-shell is an important point, since it is a
source of ambiguities, related to application of the intrinsic PT, that we discuss in Sec. 4. It is also
important for OSSIM, where it occurs naturally. Note that spacelike (Euclidean) momenta for the
background gluons are assured by using equal-mass Minkowski-space spinors.
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A final remark: Ward identities in the PT are generically integrals of total derivatives in Feyn-
man parameters, as illustrated in [15]. In Sec. 3 we show that the action of a longitudinal gauge-
boson momentum triggers total derivatives in proper times. Since one can always choose Feynman
parameters to be scaled proper times, the field-theoretic and the OSSIM approach give the same
results. Ward identities are important in the PT because they trigger the pinch parts that are added
to (or subtracted from, depending on the point of view) conventional Feynman graphs. In OSSIM
certain proper-time derivatives occur (see Eq. (3.5)) that are integrated by parts, and called IBP
terms. IBP parts and pinch parts should not be confused; they are not the same, in general.

3. A brief review of the field-theoretic basis of OSSIM

So far, OSSIM have been applied to one-loop background-field actions with arbitrarily many
off-shell background gluon lines attached, and this is all we will consider. OSSIM give expressions
for off-shell Feynman graphs after momentum-space integration that is equivalent to an overall
proper-time integral. The result is an effective action depending on a specific string-inspired choice
of Feynman parameters. This effective action is a sum of terms (including ghosts) of the form

ΓS{Bµ}=
−1
2

Tr log∆
−1. (3.1)

The coefficient -1/2 refers to a single scalar; there are differing prefactors for fermions, ghosts,
charged scalars, and gluons. Here ∆ is the one-loop propagator of the quantum field Qµ , propagat-
ing in the presence of background fields Bµ .

Write the proper-time loop propagator for a charged scalar of mass m in the presence of the
background field:

∆(x− y) = P
∫

∞

0
dse−m2s

∫ y

x
{dzµ}exp{−

∫ s

0
dτ[

ż2
µ

4
− igż ·Bµ(z)]}; (3.2)

to form the logarithm, divide the integrand by s. The integration over z is functional, and the
dot indicates a proper time derivative. The trace operation in the effective action includes the
prescription that x = y, and the functional integration is over a closed worldline. The Wilson-
loop gauge interaction gives the convective part of the gauge vertex, no matter what spin is in the
quantum loop, and in particular it gives ΓC of Eqn. (2.2) for any field in the loop carrying gauge
charge.

The background gauge potential is a sum of terms:

Bµ(z) =
N

∑
i=1

taiεiµ(pi)eipi·z (3.3)

and we seek the O(gN) term in the effective action that has each background gluon polarization
vector εi exactly once. The corresponding current for the world-line variable is:

Kµ(τ) =
N

∑δ (s− τi)(εiµ∂τi + ipiµ) (3.4)

where the plane waves act at proper times τi. It is discontinuous because of the momentum transfer
at each vertex, but in the limit N→∞, ki+1−ki = O(1/N), the current is smooth. We have written
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the current for one ordering of the color generators; the whole result is a sum over all orderings,
modulo cyclic permutations.

It turns out that the scaled proper times xi≡ τi/s correspond to a choice of Feynman parameters
for the effective action expressed as a Feynman graph. This equivalence is generally of the form
shown in Fig. 3. Strassler [3] gives an example for a scalar loop attached to N NAGT background

1

2

3

N

1

2

3

N

Figure 3: A one-loop graph. The numbers label incoming momenta (external, or background, lines) and
Feynman parameters on the dashed (internal, or quantum) lines.

gluons of momenta pi, color matrices tai , and polarizations εiµ . After the path integration called
for in Eqn. (3.2) one finds (with a slight change in notation and ignoring UV regulation) for the
effective action corresponding to a single cyclic permutation of color labels:

Γ{Bµi}=
(ig2)NTr(taN . . . ta1)

16π2 ×

×
∫

∞

0

ds
s3−N

∫
[dxi j]exp[s∑

i< j
pi · p jGB(xi j)]exp[∑

i< j
(−i(pi ·ε j− p j ·εi)ĠB(xi j)+εi ·ε jG̈B(xi j)] (3.5)

where it is understood that only the term multilinear in the εi is to be saved. Here the sums over
i, j run from 1 to N. The gluons are not on shell, and their polarization vectors are simply counting
devices. However, it turns out that terms involving εi · pi do not contribute, so the polarization
vectors are effectively transverse (just as for the PT). In this integral the GB are bosonic Green’s
functions, given in Eqn. (3.7), and we define

[dxi j] = ∏{
∫ 1

0
dxi}δ (1−∑xi). (3.6)

The xi are linear combinations of conventional Feynman parameters (see the Appendix), with xi j ≡
xi− x j (see the Appendix). At the same time, they are proper times scaled by the overall proper
time s: xi = τi/s. The bosonic Green’s function is

GB(xi j) = |xi j|− (xi j)2, (3.7)

and the overdots indicate derivatives. The Bern-Kosower prescription, followed by essentially
all OSSIM practitioners, is to integrate the double-derivative term by parts, ignoring the surface
terms—hence their acronym IBP, for integration by parts.

6



P
o
S
(
Q
C
D
-
T
N
T
-
I
I
I
)
0
0
7

Three easy exercises John Cornwall

The power of OSSIM are only seen when higher spins in the loop are considered. It is here
where the choice of gauge enters, according to the form of the quantum gluon propagator. For
OSSIM this form is:

∆
−1 = D2−ΣµνGµν (3.8)

where Dµ + iBµ is the covariant propagator of the quantum field in the presence of the background
field, Σ

(αβ )
µν is the spin matrix for the spin of the quantum field, α,β label the group representation

of the spin (these indices are contracted with those of the propagator), and Gµν is the field-strength
tensor of the background field. For a spinor loop Σµν would be (1/2)σµν , and for a gluon the
simplest form of the spin generator is

Σ
(αβ )
µν = i[δ α

µ δ
β

ν −δ
β

µ δ
α
ν ]. (3.9)

Spins are incorporated into the proper-time integral through integration over Grassman coordinates,
as is well-known.

Of course, for a gluon the free propagator of Eq. (3.8) is in a Feynman gauge; in fact, it is
the BFM Feynman gauge. The contribution of Σ

(αβ )
µν to the BQQ vertex is precisely that of the

vertex ΓS, and there is no pinch vertex ΓP. So OSSIM Green’s functions are chosen to be in BFM
Feynman gauge, and are thereby gauge-invariant.

In OSSIM it is not necessary to work in the BFM Feynman gauge, but if one does then there
are no pinch terms, either from the (Feynman-gauge) propagator or from the vertex ΓF . In any
other gauge, such as the BFM Rξ gauge, there are pinch terms. We now incorporate pinch vertices
into OSSIM, and note that they generate ambiguities. It appears that their resolution is equivalent
to the intrinsic PT [8, 6].

4. Exercise 1: OSSIM in an arbitrary covariant gauge: Resolving ambiguities

The convective vertex
gż ·Bµ(z) (4.1)

corresponds in coordinate space to i
↔
∂α ; the derivatives act on the quantum-field propagator seg-

ments. With momentum labels as in Fig. 1 this is (k1 + k2)α . To go to an arbitrary gauge requires
adding pinch vertices ΓP (see Eq. (2.2)). These too are propagator derivatives:

∂1α∆F0(x1− x2) = 〈− żα

2
(τ1 = 0;x1,x2,s)〉=−ik1. (4.2)

But from the point of view of a proper-time integral żα(τ1 = 0) is ambiguous, because this proper
velocity could refer either to k1 or to k2. One should specify which propagator is being differenti-
ated by a choice of τ1 = 0±ε . The convective vertex resolves this ambiguity by using the average,
a familiar choice from Fourier transforms.

The same ambiguity appears in Ward identities. The rules for both OSSIM and the PT say that
background longitudinal terms such as pα can be dropped in any vertex, because the polarization
vector to which it is attached is transverse. But suppose we use momentum conservation (p =
k2− k1) to change the convective vertex as follows:

(k1 + k2)α = (2k1 + p)α → 2k1α or (2k2− p)α → 2k2α . (4.3)

7
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Now the Ward identity
p · (k1 + k2) = k2

2− k2
1 (4.4)

is changed to, e. g.:
2p · k1 ≡ k2

2− k2
1 + p2 (4.5)

which is correct only if p2 = 0. In Euclidean space this mass-shell condition means pα = 0 so that
k1α = k2α , and there is no discontinuity. To avoid off-shell ambiguity we must use the standard
convective vertex (k1 + k2)α .

All this is closely-related to the intrinsic PT, which begins with the usual Feynman graphs for,
say, the three-gluon vertex and drops those terms that have inverse background-field propagators.
Such terms, and many others, arise from the Slavnov-Taylor identities generated by the pinch
vertices ΓP. A typical term for the vertex in Fig. 1 is:

− k1 · (k2 + p)δνα + . . . = (p− k2) · (p+ k2)δνα + . . . = (p2− k2
2)δνα + . . . . (4.6)

In the intrinsic PT, the term in p2 should be dropped, because this term is the inverse propagator
of a background gluon. This is related to the principle of removing ambiguity by averaging: In the
term k1 · k2 in the original form of the ST identity, we should make the replacement:

ż(τ1− ε) · ż(τ1 + ε)→ 1
2
[ż(τ1− ε)2 + ż(τ1 + ε)2]. (4.7)

This is tantamount to dropping the p2 in the identity

k1 · k2 =
1
2
(k2

1 + k2
2− p2); (4.8)

precisely the requirement of the intrinsic PT.
Perhaps behind these simple remarks there is a principle for the PT that goes beyond the

standard manipulation of Feynman diagrams.

5. Exercise 2: OSSIM results through old algorithms

We use here a set of rules formulated long ago [12] for giving the numerators of Feyn-
man graphs in terms of Feynman parameters after momentum integrations are done. At least
for one-loop graphs with arbitrarily many background gluons attached, these old rules, based on
graph topology, map directly onto OSSIM where numerators are written in terms of bosonic and
fermionic Green’s functions on a closed string. But these older methods can go much further, by
dealing easily with graphs in a general Rξ gauge. An example would be the three-gluon proper
vertex [8, 6].

The rules are a straightforward extension of much older rules based on graph topology for
finding the form of the denominator D of any Feynman graph, in terms of Feynman parameters and
after all momentum integrations. The algorithms are too complicated (since they apply to an arbi-
trary Feynman graph) to give here. They involve, for example, finding all the chord sets of a graph,
defined as a set of lines whose complement is a tree graph, and cut sets, lines whose complement
is two disjoint trees, and forming sums of products of corresponding Feynman parameters. These

8
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rules simplify enormously for a one-loop graph, and have a particularly elegant form in OSSIM,
where the Feynman parameters used are not those that would naturally be connected with, say, the
graph of Fig. 3. The natural choice is to assign a Feynman parameter αi with each line as labeled
in the figure. But the string-inspired choice is to use the variables xi described in the Appendix.
(In string theory, the xi are essentially Koba-Nielsen variables specifying the location of external
vertices on the world sheet.)

We give one example of the use of these algorithms. In the numerator before momentum
integration, a term linear in the loop momentum k is replaced by its shifted value:

k→∑
j

xi j p j. (5.1)

The power of this expression is that it holds for all i (by momentum conservation). Terms of
quadratic and higher orders in k involve pairings that are algorithmically just like Wick contrac-
tions. For one-loop graphs with a relatively small number of lines the pairing coefficients are
trivial to calculate. One should note also that the spin vertex ΓS has no numerator momenta, which
considerably simplifies the treatment of these vertices.

Finally, for one-loop graphs explicit calculation shows that it is no more work to apply the
algorithms to a one-loop graph than it is to apply standard OSSIM. This work simply amounts to
rewriting the OSSIM results in a more useful form. We hope these old algorithms can be revisited
in much more detail and that they will prove useful.

6. Exercise 3: OSSIM and adjoint string breaking

The adjoint string can break, an effect that both depends on the gluon mass m and is strongly
connected with the meaning of this mass. This effect is missing from conventional Schwinger-
Dyson equation studies (as reviewed in [6]), where there is no adjoint string to break. On the
lattice, interplay between string breaking and the mass is obscured by finite-size lattice effects, the
running of m with momentum, and the fact that the Minkowski-space regime is inaccessible.

Fundamental-string breaking was studied long ago [17] as a simple rewriting of the Schwinger
instability (e+− e− pair production in a constant electric field) for quarks with a constituent mass,
but it is not quite so obvious how to apply these results to adjoint string breaking. Clearly there
is string breaking via unstable pair production3, and it has to be described gauge-invariantly. We
recognize that this calls for the calculation to be done in the BFM Feynman gauge, and in OSSIM
terms it amounts to replacing the discontinuous sum of perturbative gluons used in Eq. (2.2) by a
single space-time-dependent background potential. Earlier work[19, 20] provided a complemen-
tary view, in which the breakable adjoint string is produced by Wilson-loop perimeter (not area)
terms for center vortices whose transverse extent is governed by the gluon mass m. In this view,
the static adjoint potential rises essentially linearly and then breaks at a distance where the adjoint
string σA has stored up an energy of about 2m.

An effective and accurate way [15] to account for the gluon mass at low energies is just to
replace the massless gluon propagator of Eq. (3.8) with a massive one “by hand":

∆
−1 = D2 +m2−ΣµνBµν . (6.1)

3Not to be confused with the Nielsen-Olesen [18] magnetic instability, which is cured by a gluon mass.
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This works because (as long as m is approximated by a constant, non-running mass) the necessary
Ward identities are preserved, as well as certain supersymmetry relations [21] among three-vertices
that follow from the PT, provided that the spin 0, 1/2, and 1 particles in the loop are given the same
mass. A paper in progress by the author will provide details of the accuracy of the approximation
in Eq. (6.1).

Next, we will replace the unbroken adjoint string by a chromoelectric field E that is ap-
proximately constant over a transverse distance 1/m. To estimate the parameters E , m and zero-
momentum coupling g that enter the rate of adjoint string breaking we turn to an extended gluon-
chain model reported [22] at the first Trento QCD-TNT Workshop. The model hypothesizes a
duality beteween the number density per unit area ρM of chromomagnetic center vortices pierc-
ing an area and the number density per unit area ρE of ordinary (chromoelectric) gluons in the
gluon-chain area. If the average separation between gluons in this area is ζ , we have

ρE =
1

ζ 2 = (by duality) ρM. (6.2)

where σF is the fundamental string tension. An ancient model for this string tension4 gives σF ≈
2ρM = 2/ζ 2. Another relation for σF equates the energy of a gluon chain of length R, which is
σFR, to R times the linear energy density of gluons, or mR/ζ . This yields ζ ≈ 2/m and σF ≈m2/2.
For the adjoint string the electric flux equals the coupling:

(π/m2)E = g, (6.3)

and the adjoint string tension is the chromoelectric energy per unit length, or

σA = [
E 2

2
][

π

m2 ]≈ m2 (6.4)

where we use approximate Casimir scaling: The adjoint string tension σA is about 2σF . Combin-
ing these relations yields g2/(4π) ≈ 1/2, a satisfactory value phenomenologically. A mass m ≈
600 MeV yields σF ≈ 0.18 GeV2, as observed. The minimum string-breaking length ` is about
2m/σA ≈ 2/m≈ 0.7 Fm; transverse momenta of the produced pair may double this.

Of course, one need not invoke the model to take on purely phenomenological grounds the
relations g2/(4π) = 1/2, σF = m2/2, as we will use in our final formula.

Next, the gluon propagator of Eq. (6.1) has a spin-1 generator Σµν , not spin-1/2 as for Schwinger.
Supplying a spin-color factor for Nc colors, we get the final result:

Γ =
(4Nc)×2m

π2 (
g2

4π
)2 exp[−2π

2/g2]. (6.5)

This is a sensitive function of g, varying, for Nc = 3, from Γ≈ 0.026m at g2/(4π) = 1/2 to Γ≈ 15m
at g2/(4π) = π . For this large a coupling QCD itself really makes no sense.

4There is a typo in Ref. [22]; on p. 7 replace ζ by 1/ζ .
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A. Appendix: Conventional Feynman parameters and “proper-time" Feynman
parameters

The denominator of Fig 3, with (for example) N = 4 vertices, has the conventional expression
in terms of Feynman parameters α j associated with the internal lines as labeled:

D =
4

∑
1

p2
jα j−1α j +(p2 + p3)2

α1α3 +(p3 + p4)2
α2α4 (A.1)

where α0 ≡ α4. (We ignore irrelevant mass terms in D.) Using

p2
1 =−p1 · (p2 + p3 + p4) (A.2)

and three other equations found by permutations one can express the p2
j in terms of pi · p j, 6= j.

Then D is
D =−∑

i< j
pi · p jxi j(1− xi j) (A.3)

where xi j = xi− x j and

i < j : xi j =
j−1

∑
k=i

αk (A.4)

(the sum has only the term αi if j = i+1). We see that xi j > 0 for i < j, and the above expression
for D agrees with that found from Eqs. (3.5,3.7). It is easy to see that Eqs. (A.3, A.4) hold for
all N. OSSIM are equivalent to the basic expression for a one-loop graph as an integral over a
product of propagators ∆(ki) in the equivalent of proper-time language by writing each propagator
in momentum space as

∆(ki) =
∫

∞

0
dsie−sik2

i (A.5)

and changing variables to one overall proper time plus Feynman parameters

αi =
τi

s
, ∑αi = 1. (A.6)

Various orderings of the Feynman parameters αi correspond to the xi introduced above. For a given
ordering of the background lines, (e.g., as shown in the labeling of Fig. 3)), one readily finds the
factors of the OSSIM expression in Eq. (3.5) except for the last factor, containing information about
the interaction with gauge bosons.
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