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1. Introduction

As is well known, understanding QCD at low energies requires a non-perturbative treatment.

While several tools exist, here I will concentrate on two of the most successful, chiral symmetry

and lattice gauge theory. Combining these two has a tortuous history, marked with several bitter

controversies that continue to this day. In this talk I will fan these fires further.

In the next section I review some rather straightforward predictions of chiral symmetry for the

meson spectrum in two flavor QCD with non-degenerate quarks. I restrict myself to two flavors

for simplicity, none of the basic points depend on this in any essential way. Everything in Section

2 is well known and I believe not controversial in any way. Then in Section 3 I become less

conventional and explore what would happen if the up quark mass were to become negative while

maintaining the down quark mass at a positive value. At a certain point the neutral pion can become

massless, and beyond that one should expect a pion condensation into what is known as the Dashen

phase [1].

Section 4 takes the picture from the previous sections and draws a few general messages which

indicate non-trivial consequences for a Euclidean path integral, normally the starting point for

lattice gauge simulations. In particular, I will point out some of the peculiarities appearing in the

structure of the fermionic operators entering these path integrals. Section 5 I discuss how a generic

lattice fermion action automatically has a sort of chiral symmetry. This symmetry is associated with

the requirement of doublers, which are pushed to high energy with Wilson or overlap fermions.

Section 6 summarizes the main messages and some of the controversial consequences thereof.

2. Chiral symmetry and two flavor QCD

Throughout this discussion I will concentrate on two flavor QCD with non-degenerate quarks,

labeled as usual as up (u) and down (d). The restriction to two flavors is for simplicity, and the

basic ideas go through for more species. This section is meant to remind you of some of the

standard consequences of chiral symmetry for the light pseudo-scalar masses. In this theory one

can construct four fermion bilinears that transform as pseudo-scalars

iuγ5d ∼ π+ idγ5u ∼ π− iuγ5u idγ5d. (2.1)

The first two of these create the charged pions. Usual chiral symmetry arguments give these mesons

squared masses proportional to the average of the quark masses

M2
π±

∼ (mu +md)/2. (2.2)

The other two pseudo-scalar combinations, both electrically neutral, conceal some rather in-

teresting issues. Gauge theories generically conserve helicity in their interactions. Separating the

helicity combinations of these operators naively suggests that the mixing of

uγ5u = uLuR −uRuL (2.3)

with

dγ5d = dLdR −dRdL (2.4)
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Figure 1: A schematic representation of the pseudo-scalar mass dependence on the up quark mass with a

fixed non-vanishing down quark mass. The theory maintains a mass gap even at vanishing up quark mass.

would be suppressed by the product of the up and down quark masses. This would further suggest

that there are two light neutral pseudo-scalars, one with M2
uγ5u ∼ mu and a second with M2

dγ5d
∼ md.

Of course it is well known that this prediction is wrong. The chiral anomaly strongly mixes

the operators uγ5u and dγ5d. This mixing occurs through what is sometimes called the effective

“t’Hooft vertex” [2], which for this problem takes the form

uLuRdLdR +uRuLdRdL. (2.5)

This mixing breaks naive chiral symmetry and has dramatic consequences for the pseudo-

scalar spectrum. In particular, the symmetric combination

η ′ ∼ iuγ5u+ idγ5d (2.6)

is not a pseudo-Goldstone boson. Its mass does not become small in the chiral limit, but rather

remains of order the QCD scale

Mη ′ ∼ Λqcd +O(mu+md). (2.7)

After this mixing the orthogonal combination remains to represent the neutral pion

π0 ∼ iuγ5u− idγ5d. (2.8)
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Since this is made up of half up and half down quarks, the neutral and charged pions are degenerate

up to quadratic order in the quark masses

M2
π0
= M2

π±
−O((mu −md)

2)− e.m. effects. (2.9)

Of course, in the physical world the electromagnetic effects dominate this mass difference, but here

I ignore this for simplicity.

As these points are crucial to the later discussion, it is perhaps useful to sketch the picture

graphically. Consider fixing the down quark mass and study the meson spectrum as the up quark

mass is varied. As sketched in Fig. 1, the three pions have a leading mass dependence going as

M2
π ∝ mu+md

2
+O(m2

q) while the eta prime is heavier. The effect of isospin breaking is to give a

small separation of the neutral and charged pions as in Eq. (2.9). The sign of this splitting is not

determined by symmetry alone, but it is natural to expect the neutral pion to be lighter because

of mixing with the heavier eta prime and any pseudo-scalar gluon bound states. One important

observation from this picture is that a mass gap persists even when the up quark is massless.

3. The Dashen phase

The existence of a mass gap at mu = 0 as shown in Fig. 1 suggests that there is no physical

singularity as the up quark mass is further varied into the negative region. Such an extrapolation is

expected to behave smoothly up to a point where the square of the neutral pion mass goes to zero.

Beyond that, and this occurs sigma models, one should expect the neutral pion will spontaneously

condense and acquire an expectation value. Since this is a CP odd field, the resulting phase will

spontaneously break CP. The resulting extension of Fig. 1 is sketched in Fig. 2.

This possibility of a spontaneous breaking of CP in the strong interactions was suggested in

1971 by Dashen [1]. This was before the understanding that QCD was the likely underlying theory;

Dashen’s discussion was based on the current algebra ideas of the day. This behavior is also natural

in sigma models for chiral symmetry breaking, both in the linear [3] and the non-linear [4] forms.

Those models also suggest that the transition is Ising like, with the order parameter being the

expectation of the neutral pion field. This transition formally occurs where the strong CP angle Θ

takes the value π; it occurs in a region where the product of the quark masses is negative. The Θ

parameter as usually defined is the phase of this product.

Fig. 3 shows another way of looking at this phase structure. On varying the two physical

parameters mu and md, a CP violating phase covering a portion of the region where their product is

negative. The symmetries of this figure are quite instructive. In particular the picture is symmetric

in the sign of the average quark mass md+mu

2
as well as in the quark mass difference md−mu

2
. However

there is no symmetry between these two quantities. While the vanishing of either of these quantities

is protected by the symmetry, non-perturbative effects are expected to renormalize them differently.

4. Messages and consequences for the path integral

The picture presented in the previous sections is quite simple and should not be particularly

controversial. However when this physics is thought about in terms of the path integral approach,

it raises several interesting points. These are at the heart of several of the controversies dividing the

lattice community.
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Figure 2: As the up quark mass is varied into the negative mass region, the pions will continue to get lighter

until the neutral pion mass vanishes. Beyond that point one expects a CP violating phase where the neutral

pion field has an expectation value.

Figure 3: Varying both the up and down quark masses, a CP violating phase lies in a portion of the region

where the product of these masses is negative.
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4.1 Message 1: A mass gap persists when only one quark is massless

This point is connected to several issues. For one, it means that QCD with only one massless

quark has no infrared issues. Of course perturbative QCD requires care with infrared divergences,

but these are an artifact of perturbation theory. For any gauge invariant correlator, long distance

physics will fall exponentially in the distance with the mass of the lightest state that can be ex-

changed; that is,

〈φ(x)φ(0)〉c <∼ e−mπ0
|x|. (4.1)

This may be a bit unexpected for the path integral. While there can in principle be small Dirac

eigenvalues in the quark matrix, no long distance physics arises. Of course this is special to the one

flavor theory; with 2 or more massless quarks the pions become massless.

Note that the prediction from the sigma models does not show any non-analyticity as the up

quark mass passes through zero. This raises the question of whether there is any experimental

signature of a vanishing up quark mass. Most discussions assume that this point is well defined,

but this has never been proven non-perturbatively. The fact that the average quark mass and the

quark mass difference have no symmetry between them indicates that there is no symmetry to

protect the point of vanishing up quark mass when the down quark mass doesn’t vanish. More

formally, it is unclear whether different non-perturbative regularization schemes, such as the use

of different overlap operators, will have a universal continuum limit for the theory at vanishing up

quark mass.

The absence of a singularity at mu = 0 has further consequences for the spectrum of the Dirac

operator appearing in the path integral. Banks and Casher [5] long ago pointed out a relation

between the density of small Dirac eigenvalues and the jump in the chiral condensate that occurs

on passing through the chiral point. Since the non-degenerate quark system being explored here

has no jump in physics in the mu = 0 region, there cannot be a finite density of small eigenvalues

for the up quark operator.

This point raises serious issues for a popular technique known as “partially quenched chiral

perturbation theory.” This approach considers adding “valence” quarks to the theory which have no

feedback on the gauge fields. The physical dynamical quarks are then referred to as “sea” quarks.

The usual assumption is that multiple valence quarks will undergo a chiral condensation and give

rise to massless valence pions as their mass goes to zero. It is known that this approximation

fails in the pure gauge theory without dynamical quarks [6, 7, 8]. With a massless dynamical

quark, however, one might expect the theory to be better behaved. Nevertheless, as a valence quark

mass approaches the up quark mass, the sea and valence propagators become identical. If the

sea quark mass does not have small eigenvalues, then the valence quarks cannot either. Thus the

usually assumed chiral condensation cannot occur if only the up sea quark is massless. The basic

conclusion is that the partially quenched theory cannot be trusted for

mvalence < 〈msea〉. (4.2)

4.2 Message 2: The sign of a quark mass is physically relevant

It should be immediately clear from Fig. 2 that the meson spectrum is different between a small

positive up quark mass and a negative value of the same magnitude. This is a crucial property of
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QCD that cannot be seen in perturbation theory. Indeed, in any perturbative diagram the sign of

the mass appearing in the quark propagators can be reversed by a chiral rotation. This rotation,

however, is anomalous.

The reason the sign of the mass becomes relevant is most easily understood as arising from

gauge configurations of non-trivial topology. In particular, when one mass is negative, the path

integral receives a weighting factor of (−1)ν , where ν is the winding number of the background

gauge configuration. This is a special case of the more general result that if the up quark mass

is given a phase mu → eiΘγ5 mu then the theory describes the so called “Theta vacuum.” This is

a physically different theory for each Θ. I will return to the effects of this rotation later in the

discussion.

The relevance of the sign of the quark mass has important consequences for attempts to relate

lattice parameters to those obtained from perturbation theory in the continuum. This means that

attempts to match lattice and MS masses are particularly dangerous for non-degenerate quarks.

4.3 Message 3: A divergent correlation length is possible when no quarks are massless

Fig. 2 indicates that at the point where the Dashen phase begins the neutral pion mass will

vanish. In the effective chiral models this is an Ising like second order transition. This occurs at a

point where neither the up nor down quark masses vanish, although they are of opposite sign.

In terms of the Dirac operators in the path integral, this shows that the mass gap can vanish

without having any small Dirac eigenvalues. The location of this transition is a dynamical issue,

requiring the tuning of the up quark mass to the edge of the Dashen phase.

At a somewhat deeper level, this picture is connected to whether or not there is a first order

transition at Θ = π . When the lightest quarks are multiply degenerate, it is fairly straightforward to

argue that there must be a first order transition at such a point [9]. But in the case where the lightest

quark is non-degenerate, there is a transition only once one enters the Dashen phase. In that phase

as one crosses Θ = π , the order parameter 〈π0〉 undergoes a jump. But before one reaches this

phase, that is when the up quark mass is negative but small, the behavior at Θ = π is smooth. Thus

whether there is a transition or not is a delicate dynamical issue. The corresponding question of a

possible transition at Θ = π in the zero flavor theory remains open.

Another interesting feature of the boundary of the Dashen phase is that at this point the topo-

logical susceptibility diverges to minus infinity [10]. This comes about since the operator Fµν F̃µν

is expected to have a finite amplitude to create a neutral pion. This gives an infrared divergence

to the susceptibility as the neutral pion mass goes to zero. Reflection positivity [11] forces this

divergence to be negative.

5. Lattice Fermions

I now turn to some generic properties of lattice Dirac operators and the connection to the chiral

anomaly. These points are closely related to the Nielsen-Ninomiya theorem [12], but my approach

will be a bit different.

Suppose I am given some arbitrary lattice Dirac operator D to use for a lattice simulation. To

proceed, I assume gamma five hermiticity

γ5Dγ5 = D†. (5.1)
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This is a property of the majority of the operators currently used in practice. (One notable exception

is the twisted mass approach which adds a chiral rotation to this property.)

Now consider dividing the operator D into Hermitean and antihermitean parts D = K+M with

K = (D−D†)/2

M = (D+D†)/2
(5.2)

This immediately implies
[K,γ5]+ = 0

[M,γ5]− = 0.
(5.3)

On a lattice everything is fully regulated and finite; so the naive equation Trγ5 = 0 still holds. An

immediate consequence is that

M → eiθ γ5 M (5.4)

is an exact symmetry of the determinant. Explicitly I have

|K +M|= |eiγ5θ/2(K +M)eiγ5θ/2|= |K + eiθ γ5M| (5.5)

This leads to the next message.

5.1 Message 4: Any lattice action is symmetric under the chiral rotation M → eiθ γ5M

This looks rather peculiar in the context of the earlier remark that a chiral rotation of the

mass term yields an inequivalent theory with a non-vanishing Θ parameter. Indeed, where did the

anomaly hide? The answer is that this particular symmetry can only be a flavored chiral symmetry,

which is allowed by the anomaly. But for this to be a flavored symmetry, all lattice actions must

bring in some extra structure.

Some actions, such as naive, staggered, and minimally doubled fermions resolve this by having

doublers. Half of them use γ5 and half −γ5 for their chiral rotations. In this way the naive chiral

symmetry above is actually a flavored symmetry.

Wilson and overlap fermions contain this symmetry in a more subtle manner. In these cases the

Hermitean part M ceases to be a constant. Instead, it produces heavy states that cancel the anomaly.

To see this more explicitly, consider Wilson fermions. For the free theory the Dirac operator takes

the momentum space form

DW =
1

a
∑
µ

(iγµ sin(pµa)+1− cos(pµa))+m. (5.6)

The corresponding eigenvalue structure takes the form of a set of nested ellipses and is sketched in

Fig. 4.

For small momentum the “mass” term takes the form

m+
1

a
(1− cos(pµa)) = m+O(a) (5.7)

however for momentum components near π the eigenvalues are of order 1/a. Note that as seen

in Fig. 4, there is no symmetry if m changes sign. As noted earlier, this is a necessary feature of

QCD, and with Wilson fermions it is manifest from the outset. This action also breaks naive chiral

symmetry explicitly, i.e. [Dw,γ5]+ 6= 0 even when m = 0.

8
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Figure 4: The eigenvalue spectrum of the free Wilson fermion operator forms a set of nested ellipses.

Figure 5: The overlap operator is obtained by projecting eigenvalues of the Wilson fermion operator onto a

unit circle.

The overlap operator [13] is obtained by projecting the Wilson operator onto a circle to obtain

a unitary matrix V which is then shifted to give small eigenvalues near the origin.

DW → Do = 1−V, V †V = 1. (5.8)

This process is sketched in Fig. 5.

This projection process is computationally demanding, but it leaves an operator with rather

elegant properties. First, it maintains gamma five hermiticity γ5Doγ5 = D†
o. Second, unlike in the

Wilson case, it is a normal operator; i.e. it commutes with its adjoint, [D†
o,Do] = 0. But probably

most important, it retains an exact variant of chiral symmetry

eiθ γ̂5 Doeiθ γ5 = Do (5.9)

where

γ̂5 =V γ5. (5.10)

As with γ5, γ̂5 is Hermitean and γ̂2 = 1. All its eigenvalues are ±1 and allow one to define an index.

ν =
1

2
Trγ̂5 = Tr

γ5 + γ̂5

2
. (5.11)

This definition agrees with the continuum index for smooth fields.

With these preliminaries, it should now be clear where the anomaly went with Wilson and

overlap fermions. Effectively the doublers are still there, but have been given masses of order the

cutoff. The chiral rotation M → eiθ γ5M not only rotates the light quark masses, but also those of
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the heavy doubler states. This emphasizes an old observation of Seiler and Stamatescu [14] that

the physical Θ is the relative angle occurring under independent rotations the fermion mass and the

Wilson term.

With the overlap operator, any zero eigenmodes corresponding to topology will have heavy

counterparts on the opposite side of the unitary circle. Rotating the Hermitean part of this operator

rotates these heavy modes as well.

This hiding of the anomaly is not just a lattice artifact, but is relevant to the continuum theory

as well. In general the physical Θ can be moved around and placed on any flavor at will. In the

standard model, any non-zero Θ can be entirely moved into the top quark phase. Since the value

of Θ is physical, i.e. it gives a neutron an electric dipole moment, some properties of the top quark

remain relevant to low energy physics! In other words, the naive decoupling theorems for heavy

quarks do not apply non-perturbatively.

6. Summary

The main messages of this talk are:

1. A mass gap persists when only one quark is massless.

2. The sign of a quark mass is physically relevant.

3. A divergent correlation length can occur even when no quarks are massless.

4. Any lattice action is symmetric under the chiral rotation M → eiθ γ5M.

These are all rather straightforward consequences of effective chiral Lagrangians, but are less ob-

vious when thought of in terms of fermion determinants in a Euclidean path integral. Some of the

more controversial consequences are

1. There is no proof of universality between non-perturbative schemes for the point where the

up quark mass vanishes when the other quarks are massive.

2. The usual assumptions of partially quenched chiral perturbation theory can fail if mvalence <

msea.

3. Matching lattice results to MS can miss non-perturbative effects when the quarks are non-

degenerate.

4. Decoupling theorems do not apply non-perturbatively.

There are other related controversial points that I have not covered in this talk. One is that the

topological susceptibility also has an ambiguity from rough gauge fields. This is closely tied to

the above non-universality of the point for vanishing up quark mass. Finally there is the infamous

rooting issue for staggered quarks. In the previous editions of this conference [15, 16] I explained

in some detail as to why that approach is incorrect; I will not go into it further here.
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