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We evaluate the spectrum of the SU(2) Massive Yang-Mills (MYM) on the lattice in four dimen-
sions for several points in the β ,m2 parameter space. The region near the Transition Line (TL) is
carefully investigated, by starting from the End Point (EP) β ∼ 2.2 .
1. The energy gaps are obtained from the “time” correlator of local and gauge invariant operators
integrated over the remaining three dimensions.
2. The energy gaps are measured in the isospin I = 0,1 channels according to the global SU(2)
symmetry preserved in the deconfined region. Internal spin takes the values J = 0,1.
3. Gaps are founds in the channels I = 1,J = 1 and I = 0,J = 0,1. Not in the I = 1,J = 0 channel.
4. Near the TL a remarkable and new feature is discovered, i.e. a bifurcation of the energy gaps.
The onset of the bifurcation occurs much earlier in the I = 1,J = 1 channel with distinct prop-
erties: the lower gap follows the bare value |m| with a vanishing weight in the Källén-Lehmann
representation while the higher gap rises rapidly to a almost constant value and it is dominant for
m2 ' m2
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1. Introduction

A consistent theory of massive SU(2) Yang-Mills theory has been recently proposed [1], [2],
where the subtraction procedure of the infinities is performed according a Local Functional Equa-
tion (LFE) introduced in Ref. [3]. The mass M appears in a term à la Stückelberg

SY M +M2
∫

d4x Tr

{[
gAµ − iΩ∂µΩ

†
]2
}
, Ω ∈ SU(2). (1.1)

The theory can be used in a loop expansion at low energy. High energy processes enter in the
realm of the non-perturbative regime, since no Higgs is present in the tree level action. A lattice
formulation would be very interesting in order to test the predictions of the continuum whenever is
possible. Moreover an obvious question arises whether the spectrum of the lattice theory contains
a Higgs-like scalar, that has been excluded at the tree level in eq. (1.1).

A very interesting candidate is the following action on the cubic lattice of size N ≡ L4 with
sites x and links µ (see Ref. [4])

SL =
β

2
Re∑

�

Tr
{

1−U�
}
+

β

2
m2Re∑

xµ

Tr
{

1−Ω(x)†U(x,µ)Ω(x+µ)
}
, (1.2)

where the sum over the plaquette is the Wilson action and U(x,µ),Ω(x) ∈ SU(2). In fact in the
naive limit of zero lattice spacing a one gets the action in (1.1) with M2 = a−2m2 .

The action (1.2) is invariant under the local-left transformations gL(x) ∈ SU(2)L and the
global-right transformations gR ∈ SU(2)R (see Ref. [4])

SU(2)L

Ω′(x) = gL(x)Ω(x)
U ′(x,µ) = gL(x)U(x,µ)g†

L(x+µ)
, SU(2)R

Ω′(x) = Ω(x)g†
R

U ′(x,µ) =U(x,µ)
. (1.3)

We would like to stress the importance of this invariance property, in particular because in the
nonrenormalizable continuum Minkowskean theory it is the starting point for the removal of the
ultraviolet divergences of the loop expansion. In fact the invariance of the path integral measure
ensures the validity of the LFE for the generating functionals [3].

The above lattice model has been studied earlier as a Higgs model where the radius of the field
is frozen. Most of the work has been concerned about the nature of the change of phase across the
TL [5] -[12]. But, once a continuum theory has been shown to exist [1], [2], then the model can be
used as lattice regularization of the MYM and the dynamics can be consistently investigated [4].

This work presents a survey of the spectrum in the deconfined region. The region close the TL
is investigated in finer details, since it has complex features that can be relevant for phenomenology
in the continuum limit.

All the channels are investigated: (I = 0,1) (J = 0,1), but only the results of the simulation
are given. The phenomenological interpretation is left to a future work.

The features of the spectrum are remarkable: i) there is no correlation in the (I = 1,J = 0)
channel: in all others channels there are energy gaps; ii) for m away from the critical value mc(β )

the fit requires a single exponential; iii) for m near the TL there is a bifurcation of the energy gaps,
with earlier onset in the (I = 1,J = 1) channel than in (I = 0,J = 0,1) for decreasing m; iv) in the
Källén-Lehmann representation the weight of lower gap vanishes while that of the higher becomes
dominant for m→ mc.
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2. Features of the Lattice Model

The statistics is performed by using the partition function

Z[β ,m2,N] = ∑
{U,Ω}

e−SL . (2.1)

In principle the integration over Ω(x) is redundant, since by a change of variables (UΩ(x,µ) :=
Ω(x)†U(x,µ)Ω(x+µ)) we can factor out the volume of the group. Z[β ,m2,N] becomes[

∑
{Ω}

]
∑
{U}

exp−β

(1
2
Re∑

�

Tr{1−U�}+
1
2

m2Re∑
xµ

Tr{1−U(x,µ)}
)
. (2.2)

In eq. (2.2) the integration over Ω has disappeared; consequently Ω in eq. (5.1) does not describe
any physical degree of freedom. In that respect we are at variance with other approaches to the
same action (1.2) as in [5]-[12], where the field Ω is thought of as a Higgs field with frozen length.
In eq. (5.1) we force the integration over the gauge orbit UΩ by means of the explicit sum over
Ω. In doing this we gain an interesting theoretical setup of the model; in practice, our formalism
is manifestly gauge invariant (Section 3). Moreover by forcing the integration over the gauge orbit
UΩ we get results which are less noisy than those obtained by using only the integration over the
link variables in (2.2).

It is well established that a Transition Line (TL) exists with end point at β ' 2.2 where energy
and order parameter (D = 4) (see Ref [4])

C=
1

DNβ

∂

∂m2 lnZ =
1

2ND

〈
Re∑

xµ

Tr{Ω†(x)U(x,µ)Ω(x+µ)}
〉

(2.3)

have an inflection point becoming steeper by increasing β . See Fig. 1.

3. Gauge invariant Fields

We study the two-point functions which can provide some information on the spectrum. The
gauge invariant fields are very useful (τa are the Pauli matrices).

C(x,µ) := Ω
†(x)U(x,µ)Ω(x+µ) =C0(x,µ)+ iτaCa(x,µ). (3.1)

By construction

C(x,µ) ∈ SU(2). (3.2)

C(x,µ) is invariant under local-left transformations (1.3), while under the global-right transforma-
tions it has I = 0 (C0) and I = 1 (Ca) components (I is the isospin). One has

C0(x,µ)2 + ∑
a=1,3

Ca(x,µ)2 = 1. (3.3)
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Figure 1: The transition line. The arrow marks the position of the end point. In the figure data from previous
analysis have been used and the statistical errors are not displayed since they are too small to be shown.

4. Correlators: General Properties

In the deconfined region we expect the global-right symmetry to be implemented and therefore

〈Ca(x,µ)〉= 0

〈Ca(x,µ)Cb(y,ν)〉= 0, i f a 6= b. (4.1)

The equations in (4.1) are satisfied by the numerical simulations to a reasonable level of accuracy.

5. Correlators: Energy Gaps

Consider the two-point function of the zero -three-momentum operator

C j(t,µ) =
1

L
3
2

∑
x1,x2,x3

C j(x1,x2,x3,x4,µ)|x4=t , j = 0,1,2,3. (5.1)

Then we evaluate the connected correlator

C j j′,µν(t) =
1
L ∑

t0=1,L

〈
C j(t + t0,µ)C j′(t0,ν)

〉
C
. (5.2)
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The correlator is zero unless j = j′ and µ = ν . The spin one- and zero- amplitudes V and S are
extracted by using the relation

C j j,µν(t) =Vj j(δµν −δµ4δν4)+S j jδµ4δν4. (5.3)

Very good fit of the data is obtained by using the function

g(t) =
1
2
( f (t)+ f (L− t))

f (t) = b1e−m1t +b2e−m2t . (5.4)

Two exponentials are needed only for m ' mc, as we will illustrate shortly. Otherwise one single
exponential is enough for the fit. For comparison the β = 1.5 single exponential is shown with the
β = 3 two exponentials in Fig. 2 and 3.
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Figure 2: A time correlator in the isovector channel where a single exponential is used. The mass m2 is
close to the TL at m2

TL ∼ 0.9.

6. The Spectrum for β = 1.5

For comparison we show the result of the simulation at β = 1.5, i.e. close to the EP but still in
the region of a single phase. We explore all three channels I = 1,J = 1 and I = 0,J = 0,1. Fig. 2
shows that the single exponential fit is good. Fig. 4 and Fig. 5 give the spectrum in each channel.
The I = 1,J = 1 is the candidate for the vector meson: its mass m1 follows the bare curve

√
m2.
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Figure 3: A time correlator in the isovector channel where two exponentials are used. The mass m2 is close
to the TL at m2

c ∼ 0.231. The figure shows the contribution of the large energy gap.

7. The Spectrum for β = 10

For β above the end point the fit with two exponentials becomes necessary as m2 approaches
m2

c . Typically (clearer in the isovector channel) there is a bifurcation point where one gap follows
the bare value m and the other is very large. A series of Figures illustrates the phenomenon: Fig.
6 for I = 1,J = 1, Fig. 7 for I = 0,J = 0, Fig. 8 for I = 0,J = 1. By m2 approaching m2

c the weight
of the large gap becomes dominant as shown in Fig. 9 for I = 1,J = 1, Fig. 10 for I = 0,J = 0
and Fig. 11 for I = 0,J = 1. These features are once more a distinct sign of the transition from
the unconfined to the confined phase. It is particularly clear in the isovector-vector channel (gauge
bosons). By approaching the TL the weight of the lower gap vanishes while the large gap become
dominant. By crossing the TL the lower gap disappears and the correlation vanishes. This process
occurs at the TL, that tends asymptotically to zero for β → ∞. Thus in the limit the mass of the
gauge bosons acquires more and more lower values before disappearance.

8. Conclusions

Let us summarize the results of the lattice simulation of the lattice MYM regarding the spec-
trum.
i) No correlation in the I = 1,J = 0 channel

6
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Figure 4: Mass spectrum of the gauge vector meson for β = 1.5.

ii) Single exponential fit of correlators for β < 2.2 and for m2 >> m2
c . Bifurcation to two exponen-

tial fit for m2 ' m2
c .

iii) The I = 1,J = 1 gap follows close the bare value m.
iv) In the Källén-Lehmann representation the weight of the lower gap vanishes for m→ mc

v) while in the same limit the higher gap dominates.
Further results on the spectrum has appeared in [13].

Outlook:
1. Study the properties of the TL,
2. Understand the deviation of the vector meson mass from the bare value,
3. Examine the origin of the larger gap present after the bifurcation.
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Figure 7: Mass spectrum in the isoscalar channel (J = 0) for β = 10.
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Figure 8: Mass spectrum in the isoscalar channel (J = 1) for β = 10.
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Figure 9: Weights in the isovector channel (J = 1) for β = 10.
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Figure 10: Weights in the isoscalar channel (J = 0) for β = 10.
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Figure 11: Weights in the isoscalar channel (J = 1) for β = 10.
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