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1. The effective Polyakov line action

The effective Polyakov line action (PLASp is obtained from the underlying lattice gauge
theory by integrating out all degrees of freedom subjech@donstraint that the Polyakov line
holonomies are held fixed. In temporal gauge we have

eXp|:SD [UX]] - / DU (X, 0)DUD@ { [1]81Ux—Uo(x.0) } et (1.1)

where@ denotes any matter fields, scalar or fermionic, coupled ¢ogduge field, an&_ is the
lattice action. Our interest in the PLA is due to its possHgplication to the sign problem. Using
the strong-coupling/hopping parameter expansion, ons ahtbwest order tha® has the form

3
S=pY Zl[TrU)I TrUy + TrUTIUS ] 4k > [ENHTIU, + e NHTIY) | (1.2)
X i= X

whereBp and k can be expressed in powers [dfand the hopping parametér An action of
this form, disregarding its origin, seems to have a relitimeild sign problem, for a large range
of parameterp, K, 4, and has been solved by various means, including dual epe®ns [1],
stochastic quantization [2], reweighting [3], and meardfielethods [4]. The problem we will
address is how to derive the PLA corresponding to a giveitéatjauge theory when the lattice
coupling is not so strong, and the hopping parameter is natlsihis actually only necessary to
derive the PLA at chemical potentipl= 0, because once the PLAjat= 0 is known, the PLA at
non-zerou is obtained from a simple substitution

F[Ux, Uyl = S50 [MHUy, e MM (1.3)

One can show [5] that this relationship is true to all ordeithée strong-coupling/hopping parameter
computation ofSp, and we will assume that it holds in general. The method weaserive the
PLA atp= 0, to be expained below, we call “relative weights." Thig ialbased on work reported
in refs. [5, 6] and, for the SU(3) group, on work in progress.

There have been other approaches to calculating the g#detllyakov line action, including
strong-coupling expansions [3], the Inverse Monte Carlthae [7, 8], and the Demon approach
[9, 10], resulting in effective actions of varying compligxi A crucial test of any approach is to
calculate the Polyakov line correlator

in both the effective action and the underlying gauge theanyl see if these agree. We do not
believe that accurate agreement has been demonstrategsedpproaches at the largevalues,
at least not beyond separatioR®f two or three lattice spacings.

2. Relative Weights

Let Uy at all x on theD = 3 dimensional lattice represent a configuration of Polyalkos
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holonomies, and consider any path through the space ofcilsnfigurationt)y(A) parametrized
by A. The relative weights method allows us to compute the diévevd S /dA along the path, and
from such derivatives we try to deduce the PEAitself.

LetUy, Uy denote two configurations along the the path, corresportdihg- A\ andA — 3AA
respectively. We define the action differens® = S[Uy] — S[U//], and also lattice actior§_ in
temporal gauge with fixed holonomies

SV =S |Uo(x0) =Uy| . SIU"]=S [Uo(x0)=Uy| . (2.1)

i.e. the timelike link variables on thte= 0 timeslice are held fixed to eithek, or Uy; these links
are not integrated over in the path integration. Then, frgm(&1) we have

A5 _ /DUDget  [DUDg exp§ — e

~ [DUDgeY [ DUDgeY
"

— (exps - 1) (2.2)
where the notatior...)"” indicates that the expectation value is evaluated in thesoregpropor-
tional toe¥. We then have

dS AS

The question is which path derivatives will help us to deiem%s itself.

Let us start with the gauge group SU(2). There is no sign prabh this case, but our aim is
right now is to see if we can extract the PLA by the method desdr The SU(2) PLA can only
depend on Polyakov lindg, = %Trux. Make a Fourier expansion

Px=ag+ %q;o{aqcos(q -X) 4 bg sin(q- x)} ) (2.4)

Then we comput€dS>/0ay)a,—a by the relative weights method at a “typical” point in configu
ration space, i.e. a thermalized configuration generateldtbge Monte Carlo, by the following
procedure: (1) generate a thermalized lattice configurdtig(x) by the usual methods, and set
Ux = Up(X,0). (2) Fourier decomposBy and setay = O for some giverk. Call the resulting
configuration, transformed back to position spa&e Then construct

P, = (a+ 30ay) cosk-x) + fPy
P = (o — 1Aay) cogk-Xx) + Py, (2.5)

wheref = 1—a. (4) Derive, from the Polyakov line configuratiol% and I5)’(’ the corresponding
Polyakov line holonomied)y andUy. (5) Compute(0S>/0ay)a, —a ~ ASp/Nay by the relative
weights technique described above.
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Figure 1: (a) Derivatives of the PLA.~30S/day evaluated agy = a = 0.05, vs. lattice momentig . Also
shown is a linear best fit to the datakat> 0.7. (b) Derivatived —3(0Sp/day)q divided bya, vs. lattice
momentek,, for a = 0.05,0.10,0.15,0.20. It is clear that the derivatives 86 depend linearly owr.

3. SU(2) pure gauge theory

We begin with pure SU(2) gauge theoryfat= 2.2 on a 24 x 4 lattice volume. At this ex-
tensionN; = 4 in the time direction, the deconfinement transition is v@oge tof3 = 2.3. Figure
1(a) shows our data obtained on this lattice for the pattvative L ~3(0Sp/0ak)a,—a, evaluated at

o = 0.05, versus the lattice momentuq defined from wavenumbeksask, = 2,/52 ; sin?(3k).
HerelL3 = 24% is the volume of a time slice. What is striking about this datthat apart from low
momenta, the data fits very accurately onto a straight lingurE 1(b) is the same observable on
they-axis divided by, for several different values @f. From the fact that the data points at each
a coincide, it is clear that the derivative must be lineanjvhich means the®e itself is quadratic

in each momentum mode. It follows th&t is bilinear in the Polyakov lines, and can be written in
the form

1
S = éclng—ZCZ%PXQ(X—y)Py. (3.1)

Let Q(k) be the finite Fourier transform of the kerr@l We find thatQ(k) depends only on the
magnitudek, , and that for a PLA of the form (3.1)

a(3c1—2c,Q(k)) ke #0

1 (dSo[Ux(ak)]>ak_a _ (3.2)

L da 20(3c1 —26,Q(0)) k. =0 '

From Fig. 1 we see thad(k_) ~ k_ except at smalk,. If it were true thatQ(k_) = k_ at all k,
we would haveQ(x—Yy) = (,/—DE) , where[J? is the lattice Laplacian. But then the kernel

Xy
Q(x—y) would be long-range, which would violate one of the assuomgtiof the Svetitsky-Yaffe

1The relative factor of two betweda = 0 andk_ > 0 is reflects the fact thgt, cos’ (k- x) = 3L while 3,1 = L3.
The data points appearing on the plot&at= 0 is the data value divided by two.
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Figure 2: A test of eq. (3.2) att = 0.05. The derivative data of Fig. 1 is plotted against the attnjed
fitting functiona(3c1 — 2c,Q (kL)) With rmax= 3

conjecture [11], and in any case we see that the data deViateslinearity at smalk_. So we
implement a finite range condition in the simplest way, civups

Qx—y) = <\/_7D5>xy X —Y| < Imax . (3.3)

0 IX—Y| > max

Then we Fourier transform to obta(ﬁ(k._), and select the value of,.x Which best fits the data.
The constantg;, ¢, are determined from the straight-line fit through the higm@mentum data.
At B = 2.2 andN; = 4, the constants; = 4.417,¢, = 0.498 andrnhax= 3 give an excellent fit to
the data as seen in Fig. 2.

Givency, Co, rmaxthe effective PLA is determined, and the crucial questiamhisther Polyakov
line correlators obtained in the effective theory agreédnwlie same correlators determined in the
underlying lattice gauge theory. In Fig. 3 we show our resfadt N; = 4 lattice spacings in the time
direction at = 2.2,2.25,2.3. The last coupling is right at the deconfinement transitibean be
seen that agreement between the Polyakov line correlaeery accurate, with agreement down
to O(107°).

The appearance qf/—DE in the kernelQ(x —y) is striking, and has not been clearly seen in
other approaches [3, 7, 8, 9, 10] to extracting the effed®i@. It is worth asking if this behavior
of the kernel should be expected for some reason, at leastrfalt separations. To at least partially
answer this question, let us consider a much simpler fieldrihenamely a massless scalar free
field theory. Motivated by the definition of the effective PluA\(1.1), which involves integrating
out all degrees of freedom apart from timelike links at 0, let us consider the analogous exercise
of integrating out all degrees of freedom in the scalar frekdl fiheory, except for those at time
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On-axis Polyakov line correlators, L=24
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Figure 3: Polyakov line correlators derived from the underlyingitatgauge theory (black circles) on an
L3 x 4 lattice, and from the effective PLA (red squares) oh atattice. (a)p = 2.2 andL = 24. (b)B =2.25
andL = 16. (c)B = 2.3 andL = 16. This coupling is at the deconfinement transition.

t = 0. Itis well known that the result is simply the square of theumd state wavefunctional
WElad = [ Do []3lex.0) - @
X

xexp[—% / d3xdt(x,t) (—0%)p(x.t) | . (3.4)
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Figure 4: Comparison of the best fi; /2 — 2ck? to the relative weights data at a strong coupfng 1.2.

The functional integral ovep(x,t # 0) can be carried out analytically, with the result
Wla =« exp[— [y (Vv —DZ)XM , (3:5)

where«( is a normalization constant. Note the appearance of thdawah-kernelv/—C2. In an
asymptotically free gauge theory we might also expect tpatageak couplings, the kernel—02
in the PLA at small separations.

As a further check of our methods we can also compute the Pkall 3, where the effective
PLA, of the form (1.2), can be computed from the lattice sgronupling expansion. QWS /0ay
data forf3 = 1.2 is shown in Fig. 4. In this case the data fits a parab@@,— 2c2kE, rather than
a straight line, which implies th&(x—y) = (—Dz)xy, and this is a nearest-neighbor coupling, as
in (1.2). The comparison of the PLA extracted from this datshte PLA derived from a strong-
coupling expansion shows very good agreement:

0.028593) 5 52 ; PxPx;1 relative weights
S = B=12). (3.6)
0.028505 , 52 1 PxPx;1  strong coupling

4. Adding a matter field

We now add a fixed modulus Higgs field in the fundamental remtasion of SU(2), which
breaks the global center symmetry. For an SU(2) gauge gtbepcorresponding gauge-Higgs
action can written

1-83 2THUVUTUT K S STH! (U000 ) (4.1)
plag o

and we work ak = 0.75 andp = 2.2 on a 24 x 4 lattice. This time the PLA picks up a center
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symmetry-breaking term which is linear in the Polyakov Nagiable
1
SDZCOZPx+ EClZPS_ZCZZPxQ(x_Y)Py' (4.2)
X X Xy

In the Fourier decomposition, the symmetry-breaking tesnlinear inap, and it implies that
0Sp /04y, evaluated aby = o, goes to a non-zero constant in the— O limit. The couplingcy

is given by the extrapolation of tHe~3(0S»/0ap) data toa = 0, as shown in Fig. 5. The center
symmetry-breaking term does not contributégag 0, andcy, ¢z, rmax are determined as in the pure
gauge case.
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Figure 5: The derivatives o with respect to the amplitude of the zero mode in the gauggsiiheory,
evaluated at positive and negative valueagf a. (a) shows the full range of the data; (b) is a closeup near
o = 0. They-intercept of this data is non-zero, and determines theficaft cy of the linearZ-symmetry
breaking term in the effective PLA (3.2).

Our result for the Polyakov correlator (blue triangles)mpared to the corresponding corre-
lator in the underlying lattice gauge theory (black cirglissshown in Fig. 6. Agreement is quite
good, using our value af determined to bey = 0.023614). We can get near perfect agreement
with the underlying lattice gauge theory correlator byisgtty = 0.0265 (red circles), which is
about 14c away from our calculated value.

5. Next Steps

There is no sign problem in SU(2) gauge theory with matted$ieThis is due to the pseudo-
real property of SU(2) group respresentations. Our focus ba SU(2) is for testing purposes:
we want to check if the relative weights method can be usedttaa the corresponding effective
Polyakov line action. All indications suggest that methad indeed be used for that purpose.

The next step is to move on to SU(3) gauge theory which, if theyg field is coupled to matter
fields with non-vanishing N-ality, will have a sign problertfiaite chemical potential. Here again
the first task it to extract the PLA for the pure gauge theoryefy preliminary result is shown in
Fig. 7. This is a comparison of off-axis Polyakov line coatets in the PLA and in the underlying
lattice gauge theory 8 = 5.6 and lattice volume $6x 6, where the PLA has been determined
by the same methods used in the SU(2) case. It is desirahig ¢oit other values off, and then
add in matter fields. First we would introduce a scalar fielthmfundamental representation, as
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Figure 6: A comparison of the Polyakov line correlation functigB§x —y|) = (PxPy) as computed via
lattice Monte Carlo simulation of the underlying gauge-gtigheory (black diamonds) on a®4 4 lattice,
at couplinggd = 2.2, k = 0.75, and via Monte Carlo simulation of the correspondingatife actionS
of eq. (3.2) (blue trianglegy = 0.0236). Also shown is a simulation of the effective actionhnatslightly
different value ofcy = .02165 (red circles).
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Figure 7: A comparison of the off-axis SU(3) Polyakov line correlat@omputed in the effective PLA
(solid circles), and in the underlying lattice SU(3) pureiga theory aff = 5.6 on a 16 x 6 lattice (open

circles).

in the SU(2) case, and if this works out we would move on to fens. All of the simulations
are done a1 = 0, but we stress again that the#z 0 PLA is obtained fromu = 0 by the simple

substitution (1.3). The final step in the program, if it wotksto this point, would be to obtain the
phase diagram of the SU(3) theory in e T plane, by simulating the PLA by any of the methods
[1, 2, 3, 4] that have been applied successfully to the neassghbor form of the Polyakov line
action at finite chemical potential.
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