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1. Introduction

The behaviour of hadronic matter under the influence of a strong magnetic field B

has recently been widely discussed because of its relevance for non-central heavy ion

collisions. In such collisions there will be two lumps of spectators moving in opposite

directions. They give rise to a magnetic field perpendicular to the reaction plane. It can

be shown that the magnetic field is so strong that its consequences cannot be studied

perturbatively [1, 2, 3].

The influence of an external magnetic field on hadronic matter at zero temperature

has been studied by various authors, e.g. within the Nambu-Jona-Lasinio [4] or in the

chiral model [5]. The general result is that the magnetic field induces an increase of the

chiral condensate. This was called magnetic catalysis in [6] and claimed to be essentially

model independent. For a recent review see also [7]. The model calculations have been

extended also to finite temperature T , in order to study the phase diagram of strongly

interacting matter in a constant magnetic field. The critical temperature of the chiral phase

transition rises in most of the calculations [8, 9]. But there are also claims that the chiral

and the deconfinement phase transitions may split, and the critical temperature of the

latter decreases with the magnetic field strength [10, 11, 12, 13].

A couple of years ago several groups have started to investigate the problem through

ab initio lattice simulations of QCD and QCD-like theories with a homogenous magnetic

background field. The pioneering work - employing quenched SU(2) - was performed by

M. Polikarpov † and his collaborators [14, 15]. Later on, a few groups have performed

investigations in full lattice QCD (in Pisa [16, 17], in Regensburg [18, 19, 20, 21], see also

[22] and very recently [23]). All groups observe magnetic catalysis for temperatures in

the confined phase. In the transition or (better) crossover region the Regensburg group

reported what they call inverse magnetic catalysis, i.e. the chiral condensate and thus

the (pseudo-)critical temperature decrease with increasing magnetic field strength. A nice

recent review of the lattice results for QCD and QCD-like theories in external fields can be

found in Ref. [24].

In this talk we report on our two-colour QCD investigations [25, 26] with N f = 4 flavour

fermion degrees of freedom with equal electric charges (avoiding any “rooting” of the

fermionic determinant). In this case a first order finite temperature transition [27] can

be expected in contrast to the observed smooth crossover for N f = 2 or 2+1 at small but

non-vanishing u-, d-quark masses. Although our model is not QCD, the chiral properties

are quite similar. Furthermore, investigations of the dynamical SU(2) theory are of consid-

erable interest, because they can be extended to finite chemical potential without a sign

problem.

In Section 2 we specify the action and our observables as well as the setup for our

simulations. In Section 3 we discuss the temperature and magnetic field dependence

of the Polyakov loop and chiral condensate as well as of their respective susceptibilities.

Moreover, we provide results of a recent fixed-scale study at smaller quark mass. In

Section 4 we provide a conjecture about the B−T phase diagram and on the occurence

of (inverse) magnetic catalysis.
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2. Setup of the lattice investigation

We introduce a lattice of four-dimensional size V ≡ Nτ ×N3
σ with a spacing unit a.

The physical volume and temperature are V = (aNσ )
3 and T = 1/(aNτ), respectively. On

the links n → n+ µ̂ the group elements Uµ(n) ∈ SU(2), µ = 1,2,3,4 are defined. Periodic

boundary conditions are assumed. We employ the standard Wilson plaquette action

SG = βV ∑
µ<ν

Pµν , Pµν =
1

V
∑
n

(
1

2
Tr
(

1−Uµν(n)
)

) (2.1)

with Uµν(n) denoting the µν-plaquette matrix at site n. For the fermion part of the action,

we use staggered Grassmann variables χ̄n and χn transforming with the fundamental rep-

resentation of the gauge group SU(2). For simplicity the four flavour degrees of freedom

are assumed to carry equal electric charges q allowing to interact with an external mag-

netic field B. The boundary conditions of the fermionic fields are (anti-) periodic in the

space (time) directions. In the absence of a magnetic field the fermionic part of the action

reads

SF = a3 ∑
n,n′

χ̄n[Dn,n′ +maδn,n′ ]χn′ , Dn,n′ =
1

2
∑
µ

ηµ(n)[Uµ(n)δn+µ,n′ −U†
µ(n−µ)δn−µ,n′ ], (2.2)

where m is the bare quark mass. The ηµ(n) are the standard staggered sign factors,

η1(n) = 1 , ηµ(n) = (−1)∑
µ−1
ν=1 nν , µ = 2,3,4 . (2.3)

We introduce electromagnetic background potentials into the fermion action by new, com-

muting group elements on the links, namely Vµ(n) = eiθµ (n) ∈ U(1). A constant magnetic

background field in the z ≡ 3-direction penetrating through all the (x,y) ≡ (1,2) -planes of

finite size Nσ ×Nσ with a constant magnetic flux φ = a2qB through each plaquette can be

realized as follows:

V1(n) = e−iφn2/2 (n1 = 1,2, . . . ,Nσ −1) , V2(n) = eiφn1/2 (n2 = 1,2, . . . ,Nσ −1) ,

V1(Nσ ,n2,n3,n4) = e−iφ(Nσ+1)n2/2 , V2(n1,Nσ ,n3,n4) = eiφ(Nσ+1)n1/2 ,

V3(n) =V4(n) = 1 . (2.4)

With periodic boundary conditions the magnetic flux becomes quantized as φ = a2qB =

2πNb/N2
σ , Nb ∈ Z. Because the angle φ is periodic, the flux is bounded from above φ < π.

One obtains the condition Nb < N2
σ/2. Physically reasonable strong fields should then be

restricted at least to half of this bound, i.e. Nb ≤ N2
σ/4.

We introduce the fields Vµ(θ) into the fermionic action SF(θ) by substituting in Eq. (2.2)

Uµ(n)→Vµ(n)Uµ(n) , U†
µ(n)→V ∗

µ (n)U
†
µ(n) . (2.5)

The partition function in the background field θ is then given by

Z(θ) =
∫

∏(dχ̄(n)dχ(n)dUµ(n))e
−SG−SF (θ). (2.6)
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The simulation algorithm employed is the usual Hybrid Monte Carlo method, updated in

various respects in order to increase efficiency (even-odd and mass preconditioning, mul-

tiple time scales, Omelyan integrator and written in CUDA Fortran for the use on GPU’s).

We have computed the average Polyakov loop < L >, which is the order parameter

for confinement in the limit of infinite quark mass

< L >=
1

N3
σ

∑
n1,n2,n3

1

2
< Tr

(

Nτ

∏
n4=1

U4(n1,n2,n3,n4)

)

> (2.7)

and its susceptibility χL = N3
σ (< L2 >−< L >2). The chiral condensate, which is an exact

order parameter in the limit of vanishing quark mass, is given by

a3 < χ̄χ >=− 1

V

1

4

∂

∂ (ma)
log(Z) =

1

V

1

4
< Tr(D+ma)−1 > . (2.8)

In order to locate the phase transition we have used also the disconnected part of the

susceptibility (called “chiral susceptibility” for simplicity),

χ =
1

NτN3
σ

1

4

∂ 2

(∂ (ma))2
log(Z) = χconn +χdisc , (2.9)

χdisc =
1

NτN3
σ

1

16
(< (Tr(D+ma)−1)2 >−< Tr(D+ma)−1 >2). (2.10)

It is important to notice that the mean values defined above are bare quantities which in

principle should be renormalized when comparing with continuum expectation values.

To study the influence of an external magnetic field we have also computed the

anisotropy in the gluonic action by measuring the average value < Pµν > of the non-

Abelian plaquette energies for the different µ − ν planes as a function of the magnetic

field strength and of the temperature.

A zero-temperature simulation without magnetic field was performed for β = 1.80 and

for the two mass values ma = 0.0025, 0.01 on a lattice of size 323 ×48 in order to estimate

the lattice spacing and the pion mass (for details see [25, 26]).

For the determination of the lattice spacing a we have computed the potential between

infinitely heavy quarks. From this we obtained the Sommer parameter, defined in the

continuum by the equation

r2 dV

dr

∣

∣

∣

∣

r=r0

= 1.65 . (2.11)

Assuming r0 = 0.468(4) fm [28] the lattice spacings for ma = 0.0025 and ma = 0.01 were

obtained (cf. Table 1). Inserting the value of a into the result for the effective pseudo-

scalar meson mass we obtained the pion mass in physical units for ma = 0.0025 and about

half of that value for ma = 0.01 as expected from the relation m2
π ∝ m (cf. Table 1). As

a consequence, for am = 0.01 we reached a ratio mπ/Tc(B = 0) ≈ 1.7, which is similar to

the estimate in [16, 17], but higher than that in [18]. However, for am = 0.0025 we gained

a value mπ/Tc(B = 0) ≈ 1.0 already interesting for a comparison with the real physical

situation.
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β am Nσ Nτ Nm
b R0 a[fm] mπ [MeV]

√
qBm[GeV]

1.8 .01 16 32 50 2.75(8) 0.170(5) 330(10) 1.29(4)

1.8 .0025 32 48 200 2.78(6) 0.168(4) 175(4) 1.30(3)

Table 1: Results for the Sommer scale R0 (in lattice units), the lattice spacing a, the pion mass mπ ,

and the magnetic field strength
√

qBm for Nm
b flux units [25, 26].
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Figure 1: Bare chiral condensate a3〈ψ̄ψ〉 vs. β for various magnetic fluxes φ (in flux units),

ma = 0.01 (left panel) and am = 0.1 (right panel), lattice size 163 ×6. Curves are to guide the eye.
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Figure 2: Same as for Fig. 1 but for the bare Polyakov loop < L > vs. β .

3. Results

In Fig. 1 we have plotted the bare chiral condensate as a function of β for a set of

numbers of flux quanta and for the bare quark mass values ma = 0.01 (left panel) and

ma = 0.1 (right panel). In both of the cases the chiral condensate increases with rising

magnetic field for arbitrary fixed β . For the smaller quark mass we see quite clearly a

transition for all values of the flux quanta Nb under consideration. Moreover, the chiral

transition seems to move to higher temperatures as the magnetic field is increasing. This

tendency is in agreement with the results in [16, 17] but opposite to [18], where the chiral

condensate was seen to decrease with the flux φ in the transition region, leading to a

decrease of the transition temperature. In Fig. 2 the expectation value of the Polyakov loop

is shown vs. β for the same two values of the bare quark mass. The transition temperature

obviously increases with the quark mass as expected. At the high quark mass there
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Figure 3: The chiral susceptibility χdisc (left panel) and Polyakov loop susceptibility χL (right panel)

vs. β at am = 0.01 for magnetic fluxes Nb at lattice size 163 ×6.

seems to be only a weak effect of the magnetic field on the deconfinement temperature.

At the smaller mass value we observe a non-monotonic behaviour with the magnetic field

for fixed β -values within the transition region. In Fig. 3 we show the chiral susceptibility

and the Polyakov loop susceptibility for the lower quark mass value ma = 0.01. It is clearly

seen in the left figure that the chiral transition indeed moves to higher temperatures as

the magnetic field becomes stronger. In the right figure we show the same effect for the

Polyakov loop susceptibility. The maxima of the two susceptibilities turn out to be at the

same value for given magnetic field. Thus, there is no sign of a splitting between the chiral

and the deconfinement transition as it should be expected for a real phase transition.

However, let us keep in mind that the rise of the temperature T = 1/a(β )Nτ by lowering

a(β ) causes the physical values of the mass m and of the magnetic field qB to increase as

well, since their values remained fixed only in lattice units. At the same time we did not

renormalize our observables. Below we demonstrate how to circumvent these obstacles.

In order to study the dependence of the chiral condensate on the magnetic field

strength in the chiral limit, we have looked at the behaviour of the chiral condensate as a

function of the quark mass and of the magnetic field for various β ’s. Because we now keep

β fixed we eliminate lattice effects coming from the variation of a. We have considered

β = 1.70 (confined phase), β = 1.90 (transition region), and β = 2.10 (deconfined phase).

In the left panel of Fig. 4 we show the dependence of the bare chiral condensate on the

quark mass for various values of magnetic flux at β = 1.70. To obtain the results relevant

to continuum physics, one has to subtract an additive divergence for finite quark mass, as

well as do a multiplicative renormalization, which is needed also at zero mass. In the right

panel of Fig. 4 we show the difference between the bare chiral condensate for finite fluxes

subtracted by the same quantity at zero flux. This eliminates the main part of the additive

divergence. In the left panel we have also included points at vanishing quark mass, where

there are no additive divergencies. The non-vanishing values in this limit are obtained by

a chiral extrapolation. Because we are not very far from the transition, we have supposed

a behaviour as for the reduced three-dimensional model [27]

a3 < ψ̄ψ >= a0 +a1

√
ma+a2ma. (3.1)

6
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Figure 4: Mass dependence of the bare chiral condensate (left) and of the subtracted chiral con-

densate (right) for various magnetic fluxes at β = 1.70 (confinement). Lattice size is 163 × 6 (FS

denotes a finite-size check for qB = 0 with 243 ×6). Lines show fits with Eq. (3.1).
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Figure 5: Same as for Fig. 4 but in the transition region (β = 1.90).

Thus, we clearly see chiral symmetry breaking for β = 1.70. In Fig. 5 we show the mass

dependence of the bare chiral condensate (left panel) and the subtracted chiral conden-

sate (right panel) in the transition region (at β = 1.90) for three values of the magnetic flux.

One can see that for finite flux, as well as for zero flux, the bare and subtracted chiral

condensates are consistent with extrapolating to zero in the chiral limit. For the highest

flux, Nb = 50 one can clearly discern two regions of behaviour. For am>∼0.04 the chiral

condensate seems to extrapolate to a finite value, but for am<∼0.04 it actually extrapolates

to zero. This can be understood, if one assumes that the transition for Nb = 50 at this value

of β takes place for am ≈ 0.04. In Fig. 6 we present the same quantities as above, but for

β = 2.10. This is well inside the chirally restored phase. The chiral condensate extrapo-

lates to zero for all values of the flux. Thus, chiral symmetry is restored for all values of

the flux that we have investigated.

In our recent investigation [26] we have used a fixed-scale approach, i.e. we kept β

fixed and thereby the lattice spacing a and varied the temperature by changing Nτ . In this

way we may easily fix the mass value as well as the magnetic field strength, while varying

the temperature. Moreover, for the time being we may neglect renormalization effects.

More precisely we simulated the theory at β = 1.80 mainly with lattice sizes 323×Nτ , Nτ =

7
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Figure 6: Same as for Fig. 4 but in the deconfinement phase (β = 2.1).

4,6,8,10, and with an even lower mass value ma = 0.0025 (cf. Table 1) taking each time as

a minimum three values of the magnetic flux qB = 0.0, 0.67, 1.69 GeV2 corresponding to

flux unit numbers Nb = 0,80,200, respectively.

The influence of the magnetic field on the gauge field can be represented by studying

the different parts Pµν of the gluonic action. We introduce variables as in [20]

E
2

i = 〈P4i〉, B
2
i =| εi jk | 〈Pjk〉 , j < k . (3.2)

At B = T = 0 they are all equal by symmetry. At B = 0,T 6= 0 they fall into two groups,

because the fourth direction is not equivalent to the other ones:

E
2

1 = E
2

2 = E
2

3 ≤ B
2
1 = B

2
2 = B

2
3 . (3.3)

Introducing a magnetic field in the third direction, for T 6= 0 the only symmetries left are

rotations in the (1,2)-plane. We therefore may define

E
2
‖ ≡ E

2
3 , E

2
⊥ ≡ E

2
1 = E

2
2 , B

2
‖ ≡ B

2
3 , B

2
⊥ ≡ B

2
1 = B

2
2 . (3.4)

In Fig. 7 we show the results for the four temperature values, and each of them for the

three values of the magnetic field. We can see the following features from this figure. The
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Figure 7: Plaquette energies 〈Pµν〉 vs. temperature T = (a(β )Nτ)
−1 for qB= 0 (left), qB= 0.67 GeV2

(middle), and qB = 1.69 GeV2 (right) for different plaquette orientations (β = 1.80,am = 0.0025,Nσ =

32). Lines are to guide the eye.

pattern of the splitting is the same as in our previous article [25] and more recently found
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in full QCD [20],

B
2
‖ ≥ B

2
⊥ ≥ E

2
⊥ ≥ E

2
‖ . (3.5)

Furthermore, if B2
⊥−E 2

⊥ > 0 – which can be interpreted as a contribution to the entropy

– the system can be expected to be at the onset of the deconfinement transition or even

inside the deconfined phase. If we compare the middle panel (qB = 0.67 GeV2) of Fig. 7

with the left one (qB = 0) then at T = 195 MeV (Nτ = 6) we find this difference to be slightly

larger than for the left panel. This might be an indication that the transition temperature

as a function of the temperature went down a bit with increasing magnetic field strength.

However, comparing the right panel (qB = 1.69 GeV2) with the left one, then the corre-

sponding difference is definitely smaller than for zero magnetic field. This indicates that

the transition might be shifted to a higher temperature value.
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Figure 8: Bare Polyakov loop 〈L〉 (left) and bare chiral condensate 〈ψ̄ψ〉 (right) vs. T = (a(β )Nτ)
−1

for three values of the magnetic field strength at β = 1.80, am = 0.0025 and 323×Nτ , Nτ = 4,6,8,10.

In Fig. 8 (left) the expectation value of the unrenormalized Polyakov loop 〈L〉 is shown

as a function of the temperature. Our sizes Nτ = 4, . . . ,10 correspond to temperature values

T , which are quite widely spaced. Therefore, we cannot localize the transition e.g. for B= 0

very well. It happens around T = Tc ≃ 160−190 MeV. At T = 195 MeV (Nτ = 6) we clearly

observe again, that the Polyakov loop does not behave monotonously with the magnetic

field (see also [16]). In Fig. 8 (right) the unrenormalized chiral order parameter a3〈ψ̄ψ〉 is

shown versus T . For a fixed non-vanishing quark mass it is increasing monotonously with

the magnetic field at least for the three lower temperature values we have investigated.

This might mean that Tc always increases with a rising magnetic field strength as required

for the magnetic catalysis. In particular at T = 195 MeV we observe a strong increase

of the condensate between qB = 0.67 GeV2 and our largest value 1.69 GeV2 indicating

that the system ‘jumps’ from chiral symmetry restoration to the chirally broken phase.

This indicates that at this temperature value and within the given range of magnetic field

strength values the critical Tc(B) is rising. We find this confirmed, as previously shown in

Fig. 5 corresponding to the transition region. At the temperature T = 195 MeV (Nτ = 6) the

chiral extrapolation of the condensate a3〈ψ̄ψ〉 for qB= 0 and qB= 0.67 GeV2 points to zero,

i.e. to the chirally restored phase, while for the stronger magnetic field strength 1.69 GeV2

the data suggest a non-vanishing chiral condensate in the chiral limit (see [26]). Thus, we
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may conclude that at very strong magnetic field values the transition temperature grows

with B. This means magnetic catalysis in agreement with various models [7].

In order to study the situation in more detail, we have made simulations at the same

temperature T = 195 MeV with a few more values of Nb. The latter correspond to a range

of qB between 0 and 1.69 GeV2. We measure the expectation values of the Polyakov loop

and the chiral condensate. The results are shown in Fig. 9. There is a sharp change, which
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Figure 9: Polyakov loop (left panel) and chiral condensate (right panel) vs. field strength qB at

T = 195 MeV obtained with β = 1.80,am = 0.0025 and 323 ×6.

might be related to a phase transition in the range 0.7GeV2 < qB< 1.0 GeV2 corresponding

to
√

qB/T ≈ 4.5. This observation is supporting a magnetic catalysis phenomenon. But

for lower magnetic fields we observe a rise of the Polyakov loop with qB towards the

transition and only then a drop off followed by a monotonous decrease at larger field

values (compare with our previous non-monotonicity comment to Fig. 8 (left)). The rise at

low magnetic field values might mean that we are going deeper into the deconfinement

region, after which the transition brings us back into the confinement or chirally broken

phase. The observation of the rise of the Polyakov loop at low magnetic field values

resembles the pattern discussed in Refs. [21], where it was related to the inverse magnetic

catalysis phenomenon.

4. Conclusions

Our observations above seem to indicate a decrease of Tc with rising but small qB.

At large qB the transition temperature Tc definitely rises as expected in the case of a

magnetic catalysis. In Fig. 10 we conjecture a B−T phase diagram, which might clarify the

situation. In order to prove it, further simulations at somewhat smaller temperatures and/or

smaller quark mass would be helpful. If it proves to be true then one finds temperature

values, where at qB = 0 the system is in the confinement (chirally broken) phase. With

increasing qB one passes then the chirally restored phase, i.e. the deconfinement or

chiral transition twice, and ends up again in the confinement phase. Along such a path

in the phase diagram the chiral condensate should decrease with qB when entering the
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B

T

Tc(0)

T∗

0

Tc(B)

chirally symm. phase

chirally broken phase

Figure 10: Conjectured B-T phase diagram at fixed mass am = 0.0025. The horizontal line T =

T∗ = const. indicates the path of simulations at T = 195 MeV as in Fig 9.

chirally restored phase. This would mean the existence of inverse magnetic catalysis also

in two-colour QCD considered throughout this work [25, 26].
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