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1. Introduction: the singlet static potential V 1

The singlet static potential V 1 is a common and important observable in lattice gauge theory.

It is the energy of a static quark Q(y) and a static antiquark Q̄(x) in a colour singlet orientation (i.e.

a gauge invariant orientation) as a function of the separation r ≡ |x−y|. Since the spin of a static

quark is irrelevant, static quarks will be treated as spinless colour charges in the following.

To determine the singlet static potential for any gauge group SU(N) one typically defines a

trial state

|Φ1〉 ≡ Q̄(x)U(x,y)Q(y)|0〉, (1.1)

containing a static quark antiquark pair at separation r in a colour singlet orientation, which has

been realised by the parallel transporter U(x,y) (on a lattice a product of links). Considering the

temporal correlation function of this trial state and integrating over static quark fields one obtains

the well known Wilson loop W1,

〈Φ1(t2)|Φ
1(t1)〉 = e−2M∆tN

〈

W1(r,∆t)
〉

, ∆t ≡ t2 − t1 > 0. (1.2)

The singlet static potential V 1 ≡ V 1
0 can then be extracted from the asymptotic exponential be-

haviour of the Wilson loop,

〈

W1(r,∆t)
〉

=
∞

∑
n=0

cn exp
(

−V 1
n (r)∆t

)

∆t→∞
∝ exp

(

−V 1(r)∆t
)

. (1.3)

2. The colour adjoint static potential V T a

The goal of this work is to non-perturbatively compute Wilson loops with generator insertions,

which have been proposed as a definition of a colour adjoint static potential V T a

and are used in

potential Non-Relativistic QCD (cf. e.g. [1, 2]), a framework based on perturbation theory.

A colour adjoint orientation of a static quark Q and a static antiquark Q̄, which are located at

the same point in space, can be obtained by inserting one of the generators of the colour group T a

(e.g. for SU(3) one of the Gell-Mann matrices, T a = λ a/2), i.e. Q̄T aQ. In case the static charges

are separated in space, a straightforward generalisation are trial states

|ΦT a

〉 ≡ Q̄(x)U(x,x0)T
aU(x0,y)Q(y)|0〉. (2.1)

In the following we discuss non-perturbative calculations of the corresponding colour adjoint static

potential in various gauges analogous to that of the singlet static potential in section 1,

〈ΦT a

(t2)|Φ
T a

(t1)〉 = e−2M∆tN
〈

WT a(r,∆t)
〉

, WT a(r,∆t) ≡
1

N
Tr
(

T aURT a,†UL

)

(2.2)

〈

WT a(r,∆t)
〉

=
∞

∑
n=0

cn exp
(

−V T a

n (r)∆t
)

∆t→∞
∝ exp

(

−V T a

(r)∆t
)

(2.3)

(cf. also Figure 1). In particular we are interested in,
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∆t

r

x yx0

t1

t2

UL and UR

T a

T a

Figure 1: the colour adjoint Wilson loop WT a .

(1) whether the colour adjoint static potential V T a

≡ V T a

0 is gauge invariant (i.e. whether the

obvious gauge dependence of the correlation function 〈WT a(r,∆t)〉 only appears in the matrix

elements cn),

(2) whether V T a

indeed corresponds to the potential of a static antiquark and a static quark in a

colour adjoint orientation, or whether it has to be interpreted differently.

More details regarding this work can be found in [3, 4].

2.1 V T a

without gauge fixing

Without gauge fixing
〈

WT a(r,∆t)
〉

= 0, (2.4)

because WT a(r,∆t) is gauge variant and does not contain any gauge invariant contribution. Clearly,

without gauge fixing the calculation of a colour adjoint static potential using (2.3) fails.

2.2 V T a

in Coulomb gauge

Coulomb gauge, ∇Ag(x) = 0, amounts to an independent condition on every time slice t. It is

not complete. The remaining residual gauge symmetry corresponds to global independent colour

rotations hres(t) ∈ SU(N) on every time slice t. With respect to this residual gauge symmetry the

colour adjoint Wilson loop transforms as

〈

WT a(r,∆t)
〉

→hres
1

N
Tr
(

hres,†(t1)T
ahres(t1)URhres(t2)T

a,†hres,†(t2)UL

)

. (2.5)

Since hres(t1) and hres(t2) are independent, the situation is analogous to that without gauge fixing,

i.e.
〈

WT a(r,∆t)
〉

Coulomb gauge
= 0. (2.6)
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Therefore, also in Coulomb gauge the non-perturbative calculation of a colour adjoint static poten-

tial fails.

2.3 V T a

in Lorenz gauge

In Lorenz gauge, ∂µA
g
µ(x) = 0, a Hamiltonian or a transfer matrix does not exist. There-

fore, only gauge invariant correlation functions like the ordinary Wilson loop 〈W1(r,∆t)〉 exhibit an

asymptotic exponential behaviour and allow the determination of energy eigenvalues. The colour

adjoint Wilson loop 〈WT a(r,∆t)〉Lorenz gauge, on the other hand, does not decay exponentially in the

limit of large ∆t. Hence, the physical meaning of a colour adjoint static potential determined from

〈WT a(r,∆t)〉Lorenz gauge is unclear.

2.4 V T a

in temporal gauge

The implementation of temporal gauge in the continuum based on the Feynman propagation

kernel is given in [5, 6]. We follow the lattice formulation based on the transfer matrix [7, 8, 9].

Temporal gauge amounts to link variables U
g
0 (x) = 1. Temporal links gauge transform as

U
g
0 (t,x) = g(t,x)U0(t,x)g

†(t + a,x), g(t,x) ∈ SU(N). Consequently, a possible choice to imple-

ment temporal gauge is g(t = 2a,x) =U0(t = a,x), g(t = 3a,x) =U0(t = a,x)U0(t = 2a,x), ...

By inserting this transformation to temporal gauge g(t,x) the gauge variant colour adjoint

Wilson loop turns into a gauge invariant observable,

〈

WT a(r,∆t)
〉

temporal gauge
=

=
1

N

〈

Tr
(

UT a,g(t1;x,y)UT a,†,g(t2;y,x)
)〉

temporal gauge
= . . . =

=
2

N(N2 −1) ∑
a

∑
b

〈

Tr
(

T aURT bUL

)

Tr
(

T aU(t1, t2;x0)T
bU(t2, t1;x0)

)〉

(2.7)

(UT a

(x,y) = U(x,x0)T
aU(x0,y); cf. [4] for details). Tr(T aURT bUL) denotes a Wilson loop with

generator insertions at the spatial sides, while Tr(T aU(t1, t2;x0)T
bU(t2, t1;x0)) is proportional to

the propagator of a static adjoint quark. Consequently, the colour adjoint Wilson loop in temporal

gauge is a correlation function of a gauge invariant three-quark state, one fundamental static quark,

one fundamental static anti-quark, one adjoint static quark.

Equivalently, after defining a trial state with three static quarks,

|ΦQQ̄Qad
〉 ≡ Qad,a(x0)

(

Q̄(x)UT a

(x,y)Q(y)
)

|0〉, (2.8)

one can verify

〈ΦQQ̄Qad
(t2)|Φ

QQ̄Qad
(t1)〉 ∝

〈

WT a(r,∆t)
〉

temporal gauge
. (2.9)

The conclusion is that V T a

in temporal gauge should not be interpreted as the potential of a static

quark and a static anti-quark, which form a colour-adjoint state, but rather as the potential of a

colour-singlet three-quark state. Note that this potential does not only depend on the QQ̄ separation

r = |x− y|, but also on the position x0 of the generator T a, which is also the position of the static

adjoint quark (in the following we work with the symmetric alignment x0 = (x+y)/2).
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Using the transfer matrix formalism yields the same result. One can perform a spectral analysis

of the colour adjoint Wilson loop,

〈

WT a(r,∆t)
〉

temporal gauge
=

1

N
∑
k

e−(V T a

k (r)−E0)∆t ∑
α,β

∣

∣

∣
〈ka

αβ |U
T a

αβ (x,y)|0〉
∣

∣

∣

2

, (2.10)

where |ka
αβ 〉 denotes states with two fundamental indices α and β and one adjoint index a. In

terms of colour charges this is equivalent to one fundamental static quark, one fundamental static

anti-quark, and one adjoint static quark in a colour singlet orientation. Again the conclusion is that

V T a

in temporal gauge is the potential of a colour singlet three-quark state (cf. [4] for details).

3. A gauge invariant definition of the colour adjoint static potential using B fields

Another proposal from the literature (cf. e.g. [1, 2]) to determine the colour adjoint static

potential is based on the gauge invariant quantity

WB(r,∆t) ≡
1

N
Tr
(

T aURT b,†UL

)

Ba(x0, t1)B
b(x0, t2), (3.1)

where the open colour indices of the Wilson loop with generator insertions are saturated by colour

magnetic fields. Using the transfer matrix formalism one can again perform a spectral analysis and

show that only states |kαβ 〉 from the quark antiquark colour singlet sector contribute to the corre-

lation function (in this case with opposite parity compared to the standard singlet static potential;

for a detailed discussion of quantum numbers of states with two static charges we refer to e.g.

[10, 11]):

〈

WB(r,∆t)
〉

= ∑
k

e−(V 1,−
k (r)−E0)∆t ∑

α,β

∣

∣

∣
〈kαβ |U

T aBa

αβ (x,y)|0〉
∣

∣

∣

2

. (3.2)

Therefore, also 〈WB(r,∆t)〉 is not suited to extract a colour adjoint static potential. It can, however,

be used to extract so-called hybrid potentials (cf. e.g. [12, 13, 14]).

4. Numerical results from SU(2) lattice gauge theory

We have performed an SU(2) lattice computation of both the singlet potential V 1 and the

colour adjoint static potential V T a

in temporal gauge (which should be interpreted as a QQ̄Qad)

static potential). Results obtained at four different lattice spacings a = 0.038fm . . .0.102fm are

shown in Figure 2. V T a

in temporal gauge is for small static quark separations even stronger attrac-

tive than the singlet static potential V 1. For large separations both potentials exhibit approximately

the same slope, which indicates flux tube formation between QQad and Q̄Qad.

5. Leading order perturbative calculations

Perturbation theory for a static potential is a good approximation for small quark separations

and should agree in that region with corresponding non-perturbative results. For the gauge invariant

singlet static potential the leading order result

V 1(r) = −
(N2 −1)g2

8Nπr
+ const+O(g4) (5.1)
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Figure 2: SU(2) lattice result for the singlet potential V 1 (lower curve) and the colour adjoint static potential

V T a
in temporal gauge (upper curve).

is well-known and reproduces the Coulomb-like attractive behaviour observed in numerical lattice

computations at small separations (cf. Figure 2). The leading order colour adjoint static potential

in Lorenz gauge,

V T a

(r) = +
g2

8Nπr
+ const+O(g4). (5.2)

appears frequently in the literature. Since in Lorenz gauge a Hamiltonian or a transfer matrix does

not exist, its physical meaning is unclear. Moreover, its Coulomb-like repulsive behaviour is not

reproduced by any of the previously presented non-perturbative considerations or computations.

To study the colour adjoint static potential in temporal gauge perturbatively, we have calculated the

leading order of the equivalent gauge invariant expression derived in (2.7) in Lorenz gauge:

V T a

(r,x0 = (x+y)/2)
∣

∣

∣

temporal gauge
= V QQ̄Qad

(r,x0 = (x+y)/2) =

= −
(4N2 −1)g2

8Nπr
+ const+O(g4). (5.3)

It is attractive, stronger by a factor 4 . . .5 than the singlet static potential (depending on N), which

is in agreement with numerical lattice results (cf. Figure 2).

6. Conclusions

We have discussed the non-perturbative definition of a static potential for a quark antiquark

pair in a colour adjoint orientation, based on Wilson loops with generator insertions WT a(r,∆t) in

various gauges:

• Without gauge fixing, Coulomb gauge: 〈WT a(r,∆t)〉= 0, i.e. the calculation of a potential

V T a

fails.

• Lorenz gauge: a Hamiltonian or a transfer matrix does not exist, the physical meaning of a

corresponding potential V T a

is unclear.
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• Temporal gauge: a strongly attractive potential V T a

, which should be interpreted as the

potential of three quarks, i.e. V T a

=V QQ̄Qad
.

When saturating open colour indices with colour magnetic fields Ba, one obtains a singlet static

potential.

On the other hand leading order perturbative calculations in Lorenz gauge have long pre-

dicted V T a

to be repulsive. It appears impossible, to reproduce this repulsive behaviour by a non-

perturbative computation based on Wilson loops with generator insertions.

In a recent similar work a non-perturbative extraction of the colour-adjoint potential from

Polyakov loop correlators was suggested [15, 16]. Similar to our treatment here and in earlier

work [3, 4], an adjoint Schwinger line appears, which however is placed at spatial infinity, or far

away from the fundamental quarks. While no simulations of this observable are available yet,

since adjoint charges are screened we expect this correlator to decay as the ordinary Polyakov loop

correlator with the singlet potential shifted by a gluelump mass.
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