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We clarify the derivation of high-energy QCD evolution equations from the fundamental gauge
symmetry of QCD. The gauge-fixed classical action of the Color Glass Condensate (CGC) is
shown to be invariant under a suitable BRST symmetry, that holds after the separation of the gluon
modes into their fast classical (background) part, the soft component and the semifast one, over
which the one-step quantum evolution is carried out. The resulting Slavnov-Taylor (ST) identity
holds to all orders in perturbation theory and strongly constrains the CGC effective field theory
(EFT) arising from the integration of the soft modes. We show that the ST identity guarantees
the gauge-invariance of the resulting EFT. It also allows to control the dependence on the gauge-
fixing choice for the semifast modes (usually the lightcone gauge in explicit computations). The
formal properties of the evolution equations valid in different regimes (BKFL, JIMWLK, ...) can
be all derived in a unified setting within this algebraic approach.
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1. Introduction

The Color Glass Condensate (CGC) [1] is an effective field theory approach to the physics of
high gluon densities and gluon saturation. The fast gluon modes (in the infinite momentum frame)
are described by the classical solution to the Yang-Mills equation in the presence of some static
color sources ρ . The latter are associated with a weight function WΛ[ρ], characterizing the CGC
at the longitudinal scale Λ. Quantum Chromodynamics introduces radiative corrections around the
classical (background) gluon configuration. These corrections affect the updated weight function
WbΛ[ρ] at the new scale bΛ, with b� 1. Even when ᾱs ln1/b� 1 (with ᾱs = αxN/π , N being
the number of colors), so that perturbation theory can be trusted, the quantum corrections give rise
to logarithmically enhanced contribution that must be resummed through renormalization-group
(RG) techniques. Depending on the different approximations used, one ends up with the well-
known BFKL [2]-[4] and JIMWLK evolution equations [5]-[11].

In this proceeding I would like to provide an introduction to some recent work aimed at clari-
fying the role of fundamental QCD gauge symmetry in constraining the properties of the effective
field theory (EFT) of the CGC. The motivation is to separate the general features of the evolution
equations, that only depend on the symmetry content of the model, from the specific aspects related
e.g. to the choice of the gauge for the semifast modes or the particular approximation used in the
computation of the EFT.

It turns out that such a program is indeed quite successful. The main results are the following.
Gauge-invariance of the EFT (after the one-step quantum evolution) can be proven on the basis of
the Slavnov-Taylor (ST) identity only. The ST identity encodes at the quantum level the classical
BRST invariance of the QCD action. The ST identity also guarantees that the classical Yang-Mills
equations of motion are not deformed by the quantum corrections. Thus the classical description
of the CGC at the new scale bΛ in terms of a modified weight function WbΛ[ρ], with the same
equations of motion holding at the scale Λ, is indeed consistent. This is a crucial ingredient in the
derivation of the evolution equations and is far from being obvious. It ultimately relies on the pe-
culiar BRST symmetry of the CGC theory, after the separation of the gluons into their components
(fast, semifast and soft ones).

The technical tools required for this program have been recently developed in a series of pa-
pers [12]-[14] where cohomological methods and generalized Lie series techniques have been used
in order to constrain the complete background dependence in a gauge theory (for the full vertex
functional and not only for its local approximation).

We will not try to sketch the proofs of the results for the CGC EFT here; details can be found
in a forthcoming paper [15].

2. Classical Action

The classical action of the CGC is

SCGC[A,ρ] = SY M[A]+SW [A,ρ] , (2.1)

where we denote by SY M the SU(N) Yang-Mills action

SY M =−
∫

d4x
1
N

Tr[FµνFµν ] , (2.2)
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with Fµν = Fa
µνT a and T a the SU(N) generators. In components the field strength reads Fa

µν =
∂µAa

ν −∂νAa
µ +g f abcAb

µAc
ν . f abc are the SU(N) structure constants.

It is convenient to make use of the light-cone coordinates xµ = (x+,x−,x) with x± = (x0±
x3)/
√

2 and x = (x1,x2). We also use the vector notation~x = (x−,x).
The source ρ is the plus component (the only non-vanishing one) of the color current asso-

ciated with the fast sources. In the infinite momentum frame ρ = ρ(~x) is static. The interaction
with the gluon field is contained in SW . Under the assumption that in lowest order the coupling is
proportional to ρa(~x)A−a (x) and by requiring gauge-invariance, SW turns out to be defined on some
suitable Schwinger-Keldysh contour C in the complex time plane, built by joining the path on the
real axis from−∞ to some x+

f and backwards on a path from x+
f to−∞ with a small imaginary part

and afterwards by taking the limit x f →+∞. SW is given by [8]

SW [A,ρ] =
i

gN

∫
d3~x Tr[p(~x)WC(~x)] , (2.3)

where WC(~x) is the contour temporal Wilson line

WC(~x) = TC exp
[
ig
∫

C
dz A−(z,~x)

]
. (2.4)

In the infinite momentum frame (IMF) one can separate the fast gluon modes form the soft ones,
i.e. we set

Aµ = Âµ +aµ +δAµ . (2.5)

Âµ represents the fast modes with longitudinal momenta |p+| > Λ. It is fixed by the classical
solution of the equation of motion of the CGC action SCGC. aµ describes the semi-fast modes with
momenta p+ such that Λ > |p+| > bΛ (where we assume that b� 1, but ᾱs ln(1/b)� 1). The
a-modes are the quantum fields that will be integrated out during the one-step quantum evolution.
Finally, δAµ are in turn the soft modes with momenta |p+| < bΛ. They are fixed configurations
during the one-step quantum evolution, so that the background actually has two components, a fast
one (Âµ ) and a soft one (δAµ ).

3. BRST Symmetry

The BRST symmetry of the full gluon field Aa
µ is obtained by replacing the gauge parameter

with the Faddeev-Popov ghost field Ca, namely

sAa
µ = Dab

µ [A]Cb , Dab
µ [A] = δ

ab
∂µ +g f acbAc

µ (3.1)

The background Âa
µ is paired into a BRST doublet [16], [17] through

sÂa
µ = Ω

a
µ , sΩ

a
µ = 0 . (3.2)

Ωa
µ is an anticommuting external source with ghost number one. Eq.(3.2) guarantees that the

cohomology of the theory [17] (and hence the physical observables) is unaffected by the intro-
duction of the background configuration. In the standard approach to the algebraic treatment of
the Background Field Method [18]-[20], Eq.(3.1) together with Eq.(3.2) fixes uniquely the BRST
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transformation of the quantum field Qµ = Aµ − Âµ . In the present case there is one more field in
the game, namely δA. However in the CGC prescription for obtaining the EFT, δA plays the role
of a background field and thus cannot have a Ω-dependent term in its BRST variation. It is also
convenient to split the ghost Ca into a soft (δca) and a semifast (ca) component according to

Ca = ca +δca (3.3)

This leads us to the following BRST transformations for the gluon modes:

sδAa
µ = Dab

µ [δA]δcb , saa
µ = sAa

µ = sδAa
µ − sÂa

µ . (3.4)

In the presence of a soft component of the gluon field that is not integrated out, the color
current entering into SW must be evaluated by using the Wilson line from z+→−∞ to x+ of the
soft modes δA− [15]. The classical equation of motion then becomes (we denote by α the plus
component of the fast background field, that can be chosen to be the only non-vanishing one in the
Coulomb gauge):

∇∇∇
2
xxxα(x) =−U†(x)J+(x)U(x) (3.5)

where J+ is the plus component of the color-rotated current and U† is the Wilson line

U†(x) = Pexp
[

ig
∫ x−

−∞

dz−α(x+,z−,xxx)
]
, (3.6)

It is convenient to redefine the source in the r.h.s. of Eq.(3.5) by setting

χ(x)≡U†(x)J+(x)U(x). (3.7)

Then, χ becomes the independent variable; it transforms in the adjoint representation of SU(N),
and therefore

sχ
a = g f abc

χ
b
δcc. (3.8)

Again one has to split χ into a background part and a quantum fluctuation

χ
a = χ̂

a +δ χ
a . (3.9)

χ̂a is the source associated to the classical field α and hence its BRST transformation is given by

sχ̂
a =−∇∇∇

2
xxxΩ

a+(x) , (3.10)

while the BRST transformation of δ χ is obtained by difference from Eq.(3.8) and Eq.(3.9).

4. ST identity for the EFT

The quantization of the theory proceeds by choosing a gauge-fixing for the semifast modes.
This is usually done in the lightcone gauge, where ghosts decouple. This is why they never appear
in explicit computations in the CGC framework. However, having introduced the appropriate BRST
symmetry, nothing prevents to choose a different gauge. The ghost interactions are automatically
fixed by the BRST symmetry in the usual fashion and one must of course include their contributions

4
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in the computation of the effective action at leading order in ᾱs ln(1/b). This is discussed in detail
in [15].

The existence of a classical BRST-invariant action allows one to write in the usual way [21]
the Slavnov-Taylor (ST) identity for the full vertex functional Γ, valid to all orders in the loop
expansion if the theory is non-anomalous (as it happens for QCD).

In the CGC framework one is not really interested in Γ, but in the effective action Γ̃ obtained
by intgrating out the semifast modes aµ . Γ̃ is the generating functional of all diagrams that are
one-particle reducible (1-PR) with respect to (w.r.t.) aµ and one-particle irreducibile (1-PI) w.r.t.
all other fields. We will not dwell here on the details of the derivation of Γ̃ and just report the ST
identity that it fulfills:

S Γ̃≡
∫

d4z

[
Ω

a
µ(z)

δ Γ̃

δÂa
µ(z)

+
δ Γ̃

δ (δA∗aµ (z))
δ Γ̃

δ (δAa
µ(z))

+
δ Γ̃

δ (δc∗a(z))
δ Γ̃

δ (δca(z))
+δba(z)

δ Γ̃

δ (δ c̄a(z))

+
δ Γ̃

δ (δχ∗a(z))
δ Γ̃

δ (δχa(z))

]
= 0. (4.1)

In the equation above, δ c̄a is the antighost for the soft modes and δba the corresponding Nakanishi-
Lautrup multiplier field. δA∗, δc∗ and δ χ∗ are the antifields (i.e. the sources of the BRST trans-
formations) of the soft gluons, the soft ghost and the quantum fluctuations of the color sources χ

respectively.

4.1 Gauge invariance

Eq. (4.1) yields very strong constraints on the effective action of the CGC. Let us take a
derivative w.r.t. δcb and then set δc, Ω and δb, to zero. One finds

∫
d4z

[
δ 2Γ̃

δ (δcb(x))δ (δA∗aµ (z))
δ Γ̃

δ (δAa
µ(z))

+
δ 2Γ̃

δ (δcb(x))δ (δχ∗aµ (z))
δ Γ̃

δ (δχa
µ(z))

]
= 0. (4.2)

At Ω = 0 the BRST variations sδA and sδ χ contain neither a nor c and hence do not receive
radiative corrections upon the integration of the semifast modes. This means that they remain
classical, namely

δ 2Γ̃

δ (δcb(x))δ (δA∗aµ (z))
=

δ 2Γ̃(0)

δ (δcb(x))δ (δA∗aµ (z))
= δ

ab
∂µδ

(4)(x− z)+g f acb
δAc

µδ
(4)(x− z),

δ 2Γ̃

δ (δcb(x))δ (δχ∗a(z))

∣∣∣∣∣
Ω=0

=
δ 2Γ̃(0)

δ (δcb(x))δ (δχ∗a(z))

∣∣∣∣∣
Ω=0

= g f acb [χ̂c(x)+δ χ
c(x)]δ (4)(x− z).

(4.3)

Hence Eq. (4.2) amounts to the statement of gauge invariance of the effective action Γ̃. We stress
that this result holds irrespectively of the gauge choice for the semi-fast modes: that is, gauge
invariance follows as a consequence of the ST identity (4.1) and of the semifast-soft decomposition.
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5. (Quantum-deformed) Background Equations of Motion

Taking a functional differentiation of Eq. (4.1) w.r.t. the source Ω, and setting Ω = 0 after-
wards, yields (at δb = 0)

δ Γ̃

δÂa
µ(x)

=−
∫

d4z

[
δ Γ̃

δΩa
µ(x)δ (δA∗bν (z))

δ Γ̃

δ (δAa
µ(z))

+
δ Γ̃

δΩa
µ(x)δ (δχ∗b(z))

δ Γ̃

δ (δχb(z))

]
. (5.1)

This is a fundamental equation for the effective field theory, as it encodes how quantum fluctuations
will modify the classical equation of motion (3.5) for the background field configuration.

The first term in (5.1) controls the (gauge-dependent) deformation of the classical background-
quantum splitting induced by quantum corrections [12]-[14]. In general (e.g. for gauge theories in
the presence of instanton configurations) this deformation is not zero.

The second term fixes instead the functional dependence of the background Â on the color
charge density δχ , once quantum corrections are taken into account.

This result is very general: it does not rely on the specific form of the action chosen, on the
gauge-fixing adopted for the semifast modes, and on the order of approximation used in order to
compute radiative corrections.

Let us now specialize to the CGC case. By taking into account the structure of the BRST
symmetry it can be proven [15] that

Γ̃
Ω

µ
a δA∗νb

(x,y) = 0, (5.2)

while

Γ̃
Ω

µ
a δ χ∗b

(x,y) = Γ
(0)
Ω

µ
a δ χ∗b

(x,y) =−δ
µ+

∇∇∇
2
xxxδ

(4)(x− y). (5.3)

It is understood that the background field has not been set to zero here, so Eqs.(5.2) and (5.3)
are valid in the presence of the background α . Eq.(5.2) tells us that the equation of motion for the
background will not be affected by the soft modes of the theory. This is physically reassuring, since
it means that the separation of scales is preserved under the quantum evolution. Eq.(5.3) in turn
implies that the equation of motion, relating the background field to the color sources, maintains
the same classical form after quantum corrections are taken into account. This is a non-trivial result
that follows directly from the symmetry properties of the theory. It is a crucial property in order
to be able to encode all the effects of the quantum fluctuations into an updated weight function
WbΛ[ρ], while determining the new background configuration again by the same classical equation
of motion valid for the theory at the scale Λ.

6. Conclusions

Gauge invariance of the CGC effective action, as well as the stability of the background equa-
tion of motion under the one-step quantum evolution, follow from basic symmetry properties of
the theory, encoded in the ST identity. In particular it does not depend on the choice of the semifast
modes and on the order of approximation used in the evaluation of the effective action. The general
structure of the evolution equations can also be derived within this purely algebraic setting [15].
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