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1. Introduction

The calculation of gluon and ghost correlation functionggiauge fixed) Yang-Mills theories,
both in the vacuum and at finite temperature/density, is tibgest of an intense research activity.
Such correlators are the basic ingredients for the caloulatf (gauge invariant) observables, such
as the glueball spectrum, thermodynamic quantities, drtirea transport coefficients. In this
context, the Landau and Coulomb gauges are the most widety;, msainly because they can be
relatively easily implemented in genuine nonperturbatyproaches on the lattice [2, 3]. For
instance, the Landau gauge conditi@gAﬂ =0, whereA‘f’, is the gluon field configuration along
the gauge orbit), extremizes the functional (a sum oyeis understood)

FIAg = /);tr (A%)?, (1.1)

which admits a simple lattice discretization, well-suitechumerical minimization techniques.

It is of interest to investigate other possible gauges. Gamtigauges are of particular inter-
est, in particular in the context of continuum approaches, td their greater degree of symmetry.
The simplest example beyond the Landau gauge is the clasgaf covariant gaugeé,,A?, =A,
whereA is a Gaussian distributed field in the Lie algebra of the gaugep. Attempts to formulate
a lattice version of the latter, based on an extremizatiostfanal of the form# [A, g] + h[g],* have
been made in Refs. [12, 13, 14]. But this is doomed to failuetd a no-go theorem by Giusti [15]
and these proposals are in fact limited to infinitesimal gawansformation$. An alternative ex-
tremization functional, of the form‘ixtr(d,lA?, —/\)2 has been considered in [15, 16, 17]. Although
this presents spurious solutions, the authors argue tisatah be kept under control. Another issue
is that the corresponding Faddeev-Popov operator is imfatathat of linear covariant gauges. To
our knowledge, this line of investigation has not been peadgurther.

Another possibility is, instead, to leave out the requiret a linear gauge but to keep the
simple form of the extremization functionaf [A,g] + h[g]. In [1], we have proposed a class of
non-linear covariant gauges that can be formulated as agreiziation problem of this form which
has all the good properties for a possible numerical impleat®n. This is a simple generalization
of the proposal of [12], however not restricted to infiniteal gauge transformations. Remarkably,
when ignoring Gribov ambiguities at high energy, using tien8ard Faddeev-Popov approach,
the proposed class of gauges reduces to the known Cur@sFBeelbourgo-Jarvis (CFDJ) gauges
[18, 19]. In this contribution, we briefly review the maindis of our proposal [1]. We also comment
on a continuum formulation of this class of gauges whichikenthe Faddeev-Popov procedure,
consistently takes into account the Gribov ambiguities eamt be formulated in terms of a local
action which is perturbatively renormalizable in four dims@ns.

1Alternative ways to implement covariant gauges in a nomlestive setup, not based on an extremization problem,
have also been considered; see, e.g., [4, 5, 6, 7, 8, 9, EO§ilse the review [11] and references therein.

2This limitation concerns the possibility to describe lineavariant gauges. However, without this restriction, the
proposal of [12, 13, 14] can be reinterpreted as a nonlineaar@ant gauge; see below.
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2. A classof non-linear covariant gauges as an extremization procedure

In the context of an SW) Yang-Mills theory, we consider the functional

t t
+
HIA N, 4] :/Xtr[(Aﬂ)2+L2ng , (2.1)
wheren is an arbitraryN x N matrix field, A} = gA,g" + &gdugJr is the gauge transform of the

gluon fieldA,, with g€ SU(N), andgp is the bare coupling constant. We define our gauge condition
as (one of) the extrema o# with respect tay, which corresponds t@a= 1,...,N)

(0u0)" = Lur [ 0"~ ). 22)

wheret? denotes the SUN) generators, normalized ag#t®) = 62°/2.
This can be used as a gauge condition for anylternatively, we can average ovgrwith a
given distributionZ?[n]. Here, we choose a simple Gaussian distribution

2
2(n] = ﬂexp<—4g—g()/xtrnTn> , (2.3)

with .4~ a normalization factor. The above procedure is a simple rgéimation of the Landau
gauge, which corresponds to the cgse 0, or, equivalently, to the distribution (2.3) wiffg = 0.

The gauge fixing described here generalizes the proposaébf R2]. There, the authors
considered the extrema of a similar functional as (2.1),relhe= —igon was constrained to be
an Hermitian matrix field in the Lie algebra of the gauge growiph the aim of enforcing a linear
gauge condition. We see from Eg. (2.2) that this is in facitéohto infinitesimal gauge transforma-
tionsg = 1L+ igpA, for which the condition (2.2) indeed reducesﬁ[m?, = A. Here, we consider
the condition (2.2) for arbitrarg. Another important difference lies in the sampling (2.3gi0the
matrix field n which is not restricted to the Lie algebra of the gauge grolipis makes an im-
portant difference, e.g., for a continuum formulation af ttorresponding gauge fixing procedure,
as discussed below. For instance, the sampling measurea|fb®s one to apply the standard
Faddeev-Popov construction and leads to a relatively siffggsm of the effective gauge-fixed ac-
tion.

To gain more insight on the gauge-fixing procedure descrbeye, let us indeed consider the
ultraviolet regime where Gribov ambiguities issues areeeigd to be irrelevant and the standard
Faddeev-Popov procedure is justified. The Faddeev-Poperatmp corresponding to the gauge
condition (2.2) reads

2
{0,1 DAY + g—zotr (t*t°gn " + ng'tt?) }5(") (x—y), (2.4)

where the derivatives act on the variakland whereD,[A9] is the standard covariant derivative
in the adjoint representation evaluatedAdx). Introducing a Nakanishi-Lautrup fieiti to ac-
count for the gauge condition (2.2) as well as ghost and laosigfieldsc and ¢ to cope for the
corresponding Jacobian, the Faddeev-Popov gauge-fixieth aetds, for a given external fieigl

SilA.c.6.h,gl = Sm Al + Sp[A.c.¢ h.g] (2.5)
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with Sym[A] the Yang-Mills action and

SLA c.Eh.g = / {0,6°D, [A%)c% +in? (9,9) "+ %tr (n"R+Rn] }. 2.6)
X

wheré
R= (h—gocc)g. (2.7)

It is important to notice here that the effective action J2i€épends separately énandg, not
only on the combinatio9, which makes the standard Faddeev-Popov trick of factayiniut a
volume of the gauge group inaplicable. Here, the sampliri®) @/ern is of great help since

/@nﬂ[n]exp{—%/xtr n"R+ RTn]} O exp{fo/xtr [RTR]} (2.8)

does not depend explicitly apanymore? The resulting gauge-fixed action is of the foBpy [A] +
Sep|AY, c,c,h] and one can factor out the volume of the gauge group in thelatdrmanner. Re-
markably the calculation of {RTR] in (2.8) yields, after some simple algebra,

Su[A.C, & h] = Sy [A] + ScrodA, ¢, G 1, (2.9)

where

a)2 2 2
ScrodA.C,GH = / {duc—:aD“ca—i—ihad“Aﬁ—i—Eo (hz) ~ D pavcipaghee L ((favcepee) ]}
X
(2.10)

is nothing but the Curci-Ferrari-Delbourgo-Jarvis gatigigyg action [18, 19]. Thus the gauge
fixing discussed here provides a nonperturbative genataliz of the CFDJ gauge that may be
implementable on the lattice; see below.

The CFDJ gauges are known to possess various good propé&idieisstance, they are pertur-
batively renormalizable in four dimensions. Also, they éavnilpotent BRST symmetry and are
thus unitary. However, they have Gribov ambiguities, jisstte Landau gauge. In principle this
would not be a problem for lattice calculations as one maifyesslect a particular copy, as done
in the so-called minimal Landau gauge.

3. Lattice formulation

Let us briefly discuss the possible lattice formulation @& tfauge-fixing described here, fol-
lowing the lines of [12]. Introducing the SN lattice link variableU, (x) = exp{—iagoAu(x)}
and the rescaled matrix fieM (x) = a?g3n (x)/2, the simplest discretization of the functional (2.1)
reads

Ha [U,M,g] = Re tr{— ZUF,(X) + Z MT(x)g(x)} , (3.1)
XH X

3Here,ih = ih2t2 is to be seen as an Hermitian matrix field and similarlydandc.
4We note that this is not true for the sampling proposed in.[12]
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with the gauge transformed link varialdlg (x) = g(x)U, (x)g" (x+ f1), wherefi denotes a lattice
link in the directionu. Defining

:
Aﬁ(x):Ztr[ﬁ‘M] and  0-A%) = [AL(x+Q)—AZ(0], (32
o

the extrema of the functional (3.1) satisfy the lattice gaogndition
(0-A92 =itr [t2 (gM" —Mg")]. (3.3)

The first term on the right hand side of Eq. (3.1) is the ususdrétized version of the Landau
gauge extremization functional (1.1). Its essential priypis that it is linear in the gauge transfor-
mation matrixg(x) at each lattice sitg, which permits the use of powerful numerical minimization
techniques [2]. This property is obviously true for the wahainctional (3.1), which suggests that
similar minimization techniques can be employed in thatcswell.

Once a given extremum (minimum) has been obtained for eadigcoation of the link vari-
ablesU,(x) and of the noise fielt1(x), one performs the average over the former with the (dis-
cretized) Yang-Mills action and over the latter with a giweeight

PatM] =T pstT(M(X)). (3.4)
X
Our proposal [1] corresponds to

pstT(M) = exp{—itr [MTM] } = - exp{— [Ma|” } (3.5)
&o0? LL 2003

where, in the second equality, we introduced the decomniposit

N

Mo
M=——20+ Y Mat? 3.6
N aZl a (3.6)

For comparison, the proposal of Cucchieri, Mendes and S4hfj corresponds to the following
averaging over the noise fieM(x), in the present notations,

povis(M) = 5 (o) x [ 5(ReM )exp{— (ImM)* } . (3.7)
a=1 : 2509(2)
Although the ability of the proposal of [12] to describe kmecovariant gauges is limited to in-
finitesimal gauge transformations, we believe that itsalatwmerical implementation is not. In
practice, the minimization algorithm implemented in [13, 14] shows good convergence proper-
ties. We see no reason to expect the different sampling émbe an issue and it would thus be of
great interest to investigate whether similar numericahmas apply to the present proposal.

4. Continuum formulation: lifting Gribov ambiguities

The class of gauges discussed here has Gribov ambiguitiesnilist be taken into account
away from the high momentum perturbative regime. This wourddrinciple, be easy to do on
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the lattice, e.g., by picking just one copy (one minimum @&f &xtremization functional) per gauge
orbit, as usually done in the so-called minimal Landau gautj@s procedure, however, has no
direct continuum formulation and cannot be implementedua$ $n continuum approaches. In
[20] (see also [21] for a brief description) we have proposedhe context of the Landau gauge,
an alternative approach, based on averaging over the ga@oibov copies of each gauge orbit,
which can be formulated in terms of a local renormalizabteadn four dimensions. Remarkably,
this effectively results in a simple massive extension efdtandard Faddeev-Popov gauge-fixed
action which is a particular case of the Curci-Ferrari mdii8].> This provides, for the first time,
a first principle link between this model and Yang-Mills thies. This is of great interest in relation
with the recent observation [22, 23] that a simple one-loegysbative calculation in the Curci-
Ferrari model reproduces the lattice results for the vactwoapoint gluon and ghost correlators,
with remarkable accuracy, down to deep infrared momentds fi&is been recently extended to
higher correlation functions in the vacuum [24] and to thedgtof two-point correlators at finite
temperature [25].

In [1], we have generalized this approach of averaging ou#nd8 copies to the class of
nonlinear covariant gauges discussed here. We have shatyratiain, this can be formulated as
a local action which is perturbatively renormalizable imrfaimension and we have computed
the five independent renormalization factors at one-loaeiorIn that case, the effective theory
is not a simple massive extension of the CFDJ action. It alstudes a set of replicated scalar,
ghost and antighost as well as Nakanishi-Lautrup fields vtz not decouple (as in the case of
the Landau gauge). It is interesting to perform a one-lodputation of the gluon and ghost two-
point correlators in this class of gauges, for instanceudystheir dependence on the gauge fixing
paramete€y. This is work under progress. We hope this will stimulate ltéce community to
try to implement our proposal [1] in actual numerical caétidns. This would allow one to study
Yang-Mills correlators in a class of gauges continuousliynexted to the Landau gauge.
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