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During the past decades systematic studies of the magnetic moments of the 2+1 states in even-
even nuclei have been performed by several groups around the globe, providing valuable tests of
theoretical models of nuclear structure. Such measurements have unveiled important features of
the interplay between single-particle and collective excitation degrees of freedom. It is widely
accepted that the possibility to distinguish between single-particle and collective behavior in nu-
clear states, thanks to the microscopic description of the states under study, is one of the greatest
achievements of the research in nuclear magnetic moments. Experimentally, much progress has
been achieved by using the transient field technique in inverse kinematics. However, challenges
arise from the difficulty to extend these measurements to 4+1 , 2+2 , and higher excited states, the
use of low intensity radioactive beams, and reactions such as α transfer and fusion-evaporation.
In this contribution an overview of the trend of magnetic moments (g factors) for several isotopic
chains, measured using the transient field technique, will be presented. The results are evaluated
in the context of the systematic of g factors in several mass regions. Some of the challenges and
frontiers of future g-factor measurements will be discussed.
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1. Introduction

During the last decades a wealth of experimental and theoretical information has been obtained
in the field of nuclear structure with the help of the study of nuclear magnetic moments of excited
states [1, 2, 3, 4]. The outstanding property of the bare-spin g factors being positive for protons,
gπ

s =+5.586, and negative for neutrons, gµ
s =−3.826, enable the determination of the proton and

neutron contributions to the wave function of individual states, in particular for those nuclei near
closed shells. It is worth to notice that most of the g(2+1 ) factors are close to the collective value
g = Z/A. The study of the deviations from this collective value provides key information about the
evolution of the nuclear structure along several isotopic chains, and is presented below.

Recently, the measurements have been concentrated on the systematic study of even-even nu-
clei, specifically states with Jπ ≥ 2+, with a special focus on the improvement of the accuracy
of the measurements [5, 6]. In addition to the latter, the implementation of radioactive beam
facilities has extended our knowledge to regions away from stability [7, 8, 9, 10]. Another suc-
cessful technique to reach radioactive species has been the use of α-transfer reactions from stable
beams [11, 12, 13, 14, 15].

On the theoretical side, Large Scale Shell Model calculations (LSSM) using codes such as
ANTOINE [16] and the Oslo code [17], in combination with realistic interactions capable to de-
scribe large model spaces [18, 19, 20], have given us the capability to understand the microscopic
behavior of nuclei in several mass regions.

In this contribution, results on nuclear magnetic moments, using the Transient Field (TF)
technique for several isotopic chains, will be reviewed. The challenges and difficulties for future
uses of the TF technique with radioactive species and different reactions will be addressed.

2. The region between N = 20 and N = 28
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Figure 1: g-factor values for (a) the region around N = 20 and N = 28, and (b) for the region around N = 50
and N = 28. Experimental results before 2011 have been taken from Ref. [1].
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Magnetic moments measurements with the TF technique, in the region around 20 < N < 28
are presented in Fig. 1 (a). For values obtained before 2011 the average value from Ref. [1] is
reported in this contribution. For the magic numbers at N = 20 and N = 28 a maximum in the
positive values for the g factors is observed, this result is due to the filling of the 1d3/2 and 1 f7/2

neutron orbitals with the subsequent dominance of the proton configurations. Such behavior is also
observed along the isotopic chains for the other magic numbers, see Fig. 1 (b) for N = 50 and Fig. 2
(b) for N = 82.

The results for nuclei in the region allow to study the behavior around the 40Ca and 48Ca
closed-shell nuclei. For the 40

18Ar a near-spherical shell model picture may be assumed to explain
the g(2+1 ) =−0.015(42) value [21], while for 42

20Ca, the isotone of 40Ar, it was necessary to involve
significant core excitation in order to explain the vanishingly small g(2+1 ) = +0.04(6) [22]. Along
with the results for 42

20Ca, the positive value for 44
20Ca of g(2+1 ) = +0.17(3) is an unexpected result

also [22], since a negative g-factor value is expected for both isotopes from two and four valence
neutrons in the f p shell using a 40

20Ca as a closed-shell core. The measured g(2+1 ) for 42.44Ca
requires a significant core-excitation component in the 2+1 wave function. For the negative g(2+1 ) =
−0.26(6) value for 46

20Ca ( f p)6
ν configurations dominate near the shell closure at 48Ca [23]. These

results allow to conclude that 48Ca is a better closed-shell nucleus than 40Ca.
For the radioactive 38

16S and 40
16S isotopes the dominant components of the shell model wave

functions are correct to give a satisfactory description of the measured g factors [24].

3. The region around N = 50

Measurements of nuclear magnetic moments in the region around N = 50, using the TF tech-
nique, are presented in Fig. 1 (b). The region is of high interest due to the possibility to study the
N,Z = 40 sub-shell closure, and in fact this has motivated an important part of the measurements in
the region [25, 26, 27]. Overall, the behavior for most of the g(2+1 ) values follows the trend around
g = Z/A. For example, a recent experimental study of the g-factor values for the isotopic chain of
70−76
32 Ge [6], 74−82Se [28] and 76−82Kr [29, 27] found good agreement with predictions from the
IBA-II model.

A very interesting case are the g(2+1 ) values of the Zr isotopes (Z = 40). A large positive
g(2+1 ) =+1.25(20) value for 90Zr is produced by a predominantly π(g9/2)

2 configuration, whereas
the negative g(2+1 ) = values of 92Zr and 94Zr are produced by neutron excitations in the ν(d5/2)

2

and ν(d5/2)
4 respectively [26]. Values away from the g= Z/A can be observed in the 28Ni isotopes,

are caused by an strong coupling of valence particles to an excited double-magic 56
28Ni28 core [30].

4. The region 50 < N < 82 and around N = 82

The region for 50 < N < 82 presents long isotopic chains with a collective behavior overall,
as shown in Fig. 2 (a). A very interesting evolution of the magnetic moments as a function of
the neutrons is presented by the 50Sn chain, the g-factor values evolve from positive values for
the lighter isotopes to negative values for the heavier ones. A qualitative analysis of this behavior
is performed in Ref. [5]. The gradually filling of the set of neutron orbitals 0g7/2, 1d5/2, 1d3/2,
2s1/2 and 0h11/2 is responsible for the evolution of the g-factor values along the isotopic chains.
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Figure 2: g-factor values for (a) the region 50 < N < 82 using the TF technique, and (b) for the region
N = 82 using the TF technique. Experimental results before 2011 have been taken from Ref. [1].

Table 1: Empirical single-particle g factors from Ref. [5] for the neutron orbitals in the N = 50−82 major
shell, and selected proton orbitals relevant for proton core excitations across Z = 50 and resulting empirical
g factors of two-quasiparticle configurations with Jπ = 2+.

Single-particle g factors 2+1 state configuration
Orbit gemp Configuration gemp

νd5/2 -0.43 νd5/2g7/2 +0.23
νg7/2 +0.18 νd−1

5/2s1/2 -0.20
νs1/2 -1.8 νd3/2s1/2 -0.11
νd3/2 +0.46 νg−1

7/2d3/2 +0.04
νh11/2 -0.25
πg9/2 +1.22 πg9/2d5/2 +1.09
πd5/2 +1.38 πg9/2g7/2 +1.34
πg7/2 +0.73

Table 1 shows the empirical single-particle g factor values, deduced from measured g factors of
one-quasiparticle states in odd-A Sn isotopes.

For the lightest Sn isotopes, 112Sn, the g2
7/2 and the d5/2g7/2 two neutron configurations are

expected to contribute to the formation of the 2+1 state. No notable differences exist between
the 2+1 states of 112Sn and 114Sn. The decrease of the g(2+1 ) values between 114Sn and 116Sn
is explained by the fact that the d3/2 and s1/2 orbitals are already half filled, and the d3/2s1/2

configuration (g =−0.11) becomes relevant. The positive value of the g(2+1 ) for 118Sn goes off the
systematics, in Ref. [31] this behavior is attributed to the influence of the d2

3/2 neutron configuration
(g =+0.46 in Table 1) that has half the occupancy according to the results from Ref. [32]. For the
remaining heavier 120−126Sn isotopes, the h11/2 orbital is being filled and plays an important role
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in the description of the configuration of the 2+1 states [5, 9].

5. The region with N > 82
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Figure 3: g-factor values for (a) the region 82 < N < 126 measured using the TF technique, and (b) for
the g-factor values of the 4+1 states in even-even nuclei measured using the TF technique. Vertical dotted
lines correspond to the magic numbers for neutrons. Experimental results before 2011 have been taken from
Ref. [1].

The onset of collectivity, for isotopes with 82 < N < 126, is clearly seen in Fig. 3 (a), where
g-factor values for isotopes with 82 < N < 126 are presented. The influence of the π(g7/2) and
ν( f7/2) orbitals are important to explain magnetic moments around the 132Sn [33]. Deviation from
the g ∼ Z/A value have been explained with the help of pairing, single-particle contribution or
subshell closure at Z = 64 [34].

An interesting feature for the region is the possibility to easily measure g factors for states
with J > 2. This is possible due to two main reasons: firstly, the nuclear level density of the nuclei
in the region that determines the possibility to make use of Coulomb excitation reactions [34], in
some cases the ratios g(4+1 )/g(2+1 ) and g(6+1 )/g(2+1 ) are reported [35, 36] instead of single values
of g(2+1 ). Secondly, the possible use of Fusion-Evaporation reactions (FE) to populate collective
structures. The main limitation for the use of FE reactions is that the time history of the de-exciting
nuclei is not always well established, this obstacle sets limits to the information of the magnetic
interaction between the excited states and the host ferromagnetic [37, 38], some works reports
average g-factor values for deformed structures in specific isotopes [37, 39] and quasicontinuum
structures [40].

6. g-factor values for J > 2 states

In Fig.3 the g-factor values of the 4+1 states measured using the TF technique are presented.
The small number of g factor measured, when compared to the number of g(2+1 ), is due to the
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experimental difficulties to populate and simultaneously measure the precession of the states with
J ≥ 4 in certain mass regions. As has been presented in previous sections of this contribution,
three reactions have been commonly utilized to populated such states, Coulomb excitation, α-
transfer, and fusion-evaporation. Coulomb excitation provides the most reliable result and fine
results for states close to the ground state. while fusion-evaporation reactions can populate high-
spin states, the measured precession of a given state maybe contaminated by the precession from
higher-feeding states.

Recent studies using α-transfer reactions and Coulomb excitation in the A ∼ 100 region have
pointed out the importance of measuring g-factor values for J > 2 states. Two interesting cases will
be presented here, the negative g(4+1 ) value of 86

38Sr and the g(4+1 ) values for 100Pd and 96Ru.

6.1 The negative g(4+1 ) value of 86
38Sr

A surprisingly negative g(4+1 ) = −0.68(49) Value for 86Sr Has been recently reported in
Ref. [15], in contrast with the positive values of g(2+1 ) = +0.285(14) and g(2+2 ) = +0.40(16)
for the 86Sr isotope, and g(88Zr;4+1 ) = +0.65(18). Shell model calculations using the JUN45 [19]
and JJ4B [18] interactions predict a small-negative value of g(4+1 )JUN45 = −0.07 and a positive
g(4+1 )JJ4B = +0.22, using a valence space composed by the single-particle orbitals 1p3/2, 0 f5/2,
1p1/2, and 0g9/2, for both protons and neutrons.

In the considered space only three orbitals have negative single-particle Schmidt g factor val-
ues, g(p1/2)π = −0.529, g(g9/2)ν = −0.425 and g(p3/2)ν = −1.275. It is not easy to figure out
a possible configuration, that will form a 4+ state using only a proton configuration, while for
neutrons the configurations g(g9/2)

2
ν or g(p3/2, f5/2)

2
ν can form a 4+. Future Shell-Model studies

should clarify the origin of this value, and also need a better experimental value.

6.2 The trend of the g(2+1 ) and g(4+1 ) values for 100Pd and 96Ru
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Figure 4: Trend of the experimental and theoretical g-factor values for (a) 96Ru and (b) 100Pd.

The study of trends of the g-factor values as a function of the spin of the states provides an
interesting test to the microscopic predictions of nuclear models. Recent results in 100Pd [11] and
96Ru [41] present a clear example of this, in Fig. 4 the experimental results are compared with Shell
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Model calculations presented in their respective references. In both case the experimental values
do not follow the theoretical predictions. Future work to clarify the differences in these trends is
needed.

7. Summary and future

In this contribution an overview of the systematic of the nuclear g factors for several isotopic
chains was presented. For nuclei with a neutron number around a magic number a clear single-
particle behavior is present, and for nuclei in-between magic numbers a trend following the g= Z/A
prediction from collective models is followed. For isotopic chains that are out of the latter general
trend, the influence of j orbitals explain the behavior of g-factor values for the isotopic chains; this
is the case of the π(g9/2) for the Sr isotopes and the ν(h11/2) for the Sn isotopes.

The investigation of the softness of the 88Sr and 90Zr have stimulated recent studies at the
extremes of the Sr (Z = 38) isotopic chain, for the radioactive 82Sr and 90Sr, specifically, have been
carried out using α-transfer reaction from Kr isotopes [42].

The investigation of trends of magnetic moments as a function of the nuclear spin provides
a test of the microscopic prediction of the different models. Future experimental studies should
exploit:

• the use of α-transfer reactions to populate medium spin states. In recent years, the use
of α-transfer reactions has become an active area of research which allows the production of
states in radioactive species that otherwise will only be available in future radioactive beam
facilities. A hindrance to the use of the α-transfer mechanism is that the alignment of the
nuclear spin, necessary to observe a precession of the magnetic moment in an external or a
hyperfine magnetic field, is much reduced compared to that observed in experiments using
traditional Coulomb excitation.

Future studies must focus on improving the precision of the experimental results for α-
transfer reactions. Such studies need a detailed characterization of the reaction and the angu-
lar particle-γ correlations. The final goal is the design of new experimental setups with the
optimization of the position of the charged-particle detector, and the use of highly segmented
∆E-E detectors.

• the use of radioactive beams. Future studies of g factors for neutron-rich nuclei will de-
pend on the development of experimental programs to measure in radioactive beam facilities.
Some studies have been carried out recently [9, 10]. The use of Coulomb excitation reactions
will be the best way to initiate future studies in this field. The main challenges arise from the
available beam intensities.

• The study of the ion-solid interaction and the development of a new generation of target.
The study of the interaction ion-solid is pivotal to develop a new generation of targets for g-
factor measurements. To date, the use of several parametrizations, to obtain values of the
hyperfine field utilized in TF experiments [3, 2], have a common linear dependence with
the number Z of the ions but differ in their explicitly velocity dependence. The use of only
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one parametrization deduced from first principles is desirable as one of the goals of future
studies.
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