
P
o
S
(
X
 
L
A
S
N
P
A
)
0
2
7

The nuclear matrix elements of double beta decay in

the S̃U(4)× S̃U(6) model

J.P. Valencia∗†

Universidad de Antioquia, Instituto de Física, Medellín-Colombia

E-mail: pvalen@fisica.udea.edu.co

H.C. Wu†

Universidad de Antioquia, Instituto de Física, Medellín-Colombia

E-mail: wuhc@fisica.udea.edu.co

This work establishes a formalism for the study of the 2νβ β decay 76Ge → 76Se by employing

an algebraic model that involves the symmetry of pseudo-spin and pseudo-orbit. The shell model

space of the two nuclei consists of the g9/2 orbit (denoted as the g-subshell) and the orbits p1/2 −

p3/2 − f5/2, which are transformed into the orbits s̃1/2 − d̃3/2 − d̃5/2 (denoted as the d̃s-subshell).

While to the g-subshell the seniority-zero restriction applies, in the d̃s-subshell the S̃U(4)× S̃U(6)

model dominates. The nuclear structure data of the two relevant nuclei strongly suggest the S̃U(3)

limit, which reflects a strong interaction between the proton and the neutron sectors.

X Latin American Symposium on Nuclear Physics and Applications (X LASNPA),

1-6 December 2013

Montevideo, Uruguay

∗Speaker.
†The authors thank CODI of the Universidad of Antioquia for financial support.

c© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/



P
o
S
(
X
 
L
A
S
N
P
A
)
0
2
7

The Nuclear matrix elements of 2νβ β decay J.P. Valencia

1. Introduction

Due to the importance in determining the neutrino mass, the study of the neutrinoless double

beta decay (0νββ ) has gained very much attention in recent years. In the perspective of nuclear

structure the focus is on the calculation of the nuclear matrix elements (NME) of the relevant

nuclei. One way to tackle the problem is to study the NME of the 2νββ decay that takes place

between the same pair of nuclei for the 0νββ decay. To this end various models are explored,

i.e. the Interacting Shell Model [1], the Interacting Boson Model [2] as well as the Deformed

Hatree-Fock Model [3]. Nuclear Shell Model provides a quantitative description of the 2νββ

NME calculations, however the huge space involved causes a formidable technical difficulty. As

an alternative, algebraic or symmetry adapted models were developed [4, 5].

For heavy nuclei, the 2νβ−β− decay has been studied extensively by the SU(3) symmetry

model [4]. For light nuclei there also exists a SU(4) model study [5] (where the strong spin-orbit

coupling is omitted). However, for medium nuclei, e.g. for the 2νββ decay 76Ge → 76Se, there

has never been a study based on symmetry models. For the two nuclei the relevant shell model

space consists of the single-particle orbits p1/2, p3/2, f5/2 and g9/2. Recently there are studies on

the structure of 76Ge [6] by using the Effective Shell Model interaction JJB4 and JUN45. For

producing the best fit to the low-excited energies and B(E2) values, the single-particle energies (in

Mev) are:

JJ4B : p3/2 = 0.0 f5/2 = 0.3707,

p1/2 = 1.3871 g9/2 = 3.7622,

JUN45 : p3/2 = 0.0 f5/2 = 1.1193,

p1/2 = 1.9892 g9/2 = 3.5663.
(1.1)

One easily observes from these results that the energy level of the orbit p3/2 is much closer to that

of f5/2 than that of p1/2 (its spin-orbit partner), and the energy of g9/2 is far away from those of

the p f ones. These results are a clear indication of the existence of the pseudo-spin-pseudo-orbit

symmetry, i.e. the p f orbits labeled by the the quantum numbers (η , l, j) can be relabeled by

(η̃ , l̃, j). This symmetry is a consequence of the strong spin-orbit coupling that causes a breaking

of the SU(4) symmetry [7] and facilitates a new pseudo symmetry. Therefore the single-particle

orbits are now relabeled as d̃3/2, d̃5/2, s̃1/2 and g9/2, respectively. For the g-subshell, following the

previous studies, the seniority model dominates and the ground state is restricted to seniority-zero.

In the d̃s subshell the S̃U(4)× S̃U(6) model [8] applies. Based on these symmetries we develop a

formalism to calculate the NME of the 2νββ 76Ge → 76Se.

The article is organized as follows: In Section 2 we introduce the S̃U(4)× S̃U(6) model, in

Section 3 this model is applied to the calculation of the 2νββ (0+1 → 0+1 ) decay of 76Ge → 76Se

and the conclusion is in Section 4.

2. The S̃U(4)× S̃U(6) model for the d̃s subshell

A many-particle state is expressed as a direct product of the states of the d̃s- and g-subshell,

|N, JM,T µ 〉 = ∑
J1T1
J2T2

( ∣∣∣N
d̃s
, J1 T1( d̃s )

〉
⊗ |Ng, J2 T2(g)〉

)(J,T )

(M,µ)

. (2.1)
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where J,T are the total angular momentum and isospin and M,µ their projections, N
d̃s

and Ng the

number of nucleons in the d̃s and g subspace, respectively. N is the total number of nucleons and

N = Ng+N
d̃s

. The Five-dimensional quasispin model is used for a classification of the states in the

g-subshell [9, 10]:
(

SO(5)⊃

(
SUT(2)⊗U(1)

))
⊗

(
Sp(10)⊃ SUJ(2)

)

↓ ↓ ↓ ↓∣∣∣∣∣
(
g9/2

)Ng (v, t) β
′
H T2,n 〈σ〉 J2

〉 , (2.2)

the configuration of protons and neutron in a single g-subshell is given by two group chains begin-

ing with the direct product of SO(5)⊗Sp(10), where (v, t) (seniority and the reduced isospin) to

label the irreps of SO(5) and 〈σ〉 that of Sp(10), respectively. The others quantum numbers are H

with n the number of particles, β
′

additional quantum number, and T2, J2 the total isospin and the

total angular momentum, respectively. The states of the S̃U(3) limit of the S̃U(4)× S̃U(6) model

in d̃s subshell are,

S̃U(24) ⊃

(
S̃U(4)⊃

(
S̃U(2)

S̃
⊗ S̃U(2)T

))
⊗

(
(S̃U(6)⊃ (S̃U(3) ⊃ (S̃O(3)⊃ SUJ(2)

)

↓ ↓ ↓ ↓ ↓ ↓ ↓∣∣∣∣∣
{̃

1N
d̃s

}
˜(α1,α2,α3)

(
S̃1,T1

)
{̃ f} (̃λ ,µ)K̃R L̃1 J1

〉 , (2.3)

where
{̃

1N
d̃s

}
is the total antisymmetric irrep of the S̃U(24) group, ˜(α1,α2,α3) the irrep of S̃U(4),(

S̃1,T1

)
the multiplet pseudo-spin, isospin related with the irrep of S̃U(4), {̃ f} the irrep of S̃U(6),

(̃λ ,µ) the S̃U(3) representation, and K̃R the rotational quantum number, respectively. The relations

between K̃R and L̃ are given by [11, 12] as follows

K̃ = min(λ ,µ),min(λ ,µ)−2, · · · ,1 or 0

L̃ = (λ +µ),(λ +µ)−2, · · · ,1,0 if K̃ = 0

= K̃, K̃ +1, K̃ +2, · · · ,(λ +µ)− K̃+1 if K̃ 6= 0, (2.4)

in which ~̃L1 is the pseudo-angular momentum, ~̃L1 = ∑i
~̃
li, and ~J1 is the total angular momentum

associated with the d̃s subspace, and ~J1 =
~̃
L1 +

~̃
S1.

We note that this model has been used in the study of the nuclear structure of medium nuclei

[8] and the reasonably good results provide a support to this model.

3. Application to 2νββ (0+1 → 0+1 ) decay of 76Ge → 76Se

3.1 The closure approximation

The 2νβ−β− decay is a process in which a nucleus (Z,A) decays to a neighboring nucleus

(Z+2,A) and emits two electrons and two antineutrinos. The inverse half-life can be calculated by
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using the closure approximation in the form [13]
[

T 2ν
1/2

(
0+1 → 0+1

)]−1
≈ G

(0)
2ν

∣∣mec2 M2ν

∣∣2 , (3.1)

where G
(0)
2ν is a phase space factor (PSF). The nuclear matrix element is defined as M2ν = gAM2ν

[13] in which

M2ν =
〈0+1, f ,Tf | ~T (GT )− · ~T (GT )− |0+1,i,Ti 〉

¯〈E 〉
, (3.2)

where the closure energy ¯〈E 〉 stands for

¯〈E 〉=
1

2

(
Qββ +2mec2

)
+ 〈E1+,N 〉−Ei, (3.3)

in which 〈E1+,N 〉 is an adequately chosen energy of the intermediate odd-odd nuclei. For the
76Ge → 76Se decay the values of G

(0)
2ν and ¯〈E 〉 are taken as 40.17× 10−21yr−1 and 9.411 MeV,

respectively [13, 14].

3.2 The 2νββ operator in the S̃U(4)× S̃U(6) scheme

For the 2νββ operator we first express it in the normal shell model space and then transform

it into the pseudo space. The Gamow-Teller operator for a single-β decay writes as

~T (GT )
(1,1)
M ,−1 = ∑

j, j
′
,l,η

σ
(
(η , l, 1

2) j, j
′
)

A
(1,1)
M ,−1

(
(η , l) j, 1

2 ;(η , l) j
′
, 1

2

)
, (3.4)

where

σ
(
(η , l, 1

2) j, j
′
)
=
√

2(2 j+1)(2 j
′ +1)(−1)η+l+ j+ 3

2

{
1
2

1
2 1

j
′

j l

}
δ

l,l
′ δη ,η

′ , (3.5)

and

A
(1,1)
M ,−1

(
(η , l) j, 1

2 ;(η , l) j
′
, 1

2

)
=

(
a

†

((η ,0) l, 1
2 ) j; 1

2

ā((0,η), l, 1
2 ) j

′ ; 1
2

)(1,1)

(M ,−1)

, (3.6)

which destroys a neutron and create a protons in the same orbit. Note, to the initial and final nuclear

states we impose the isospin symmetry, i.e. T = Tz = (N − Z)/2. Note that the symbol ā is the

covariant form of the annihilation operator a, and the use of a bar instead of a tilde on top of it is to

avoid confusion with the pseudo sign.

The the double Gamow-Teller 2νββ operator can be transformed into the following pair-form:

~T (GT )− · ~T (GT )− = 3∑J ∑
j, j

′

l,η

∑
j
′′
, j
′′′

l
′′
,η

′′

√
(2J +1)(−1) j

′
+ j

′′
+J

{
j j

′
1

j
′′′

j
′′

J

}
σ
(
(η , l , 1

2 ) j, j
′
)

σ
((

η
′′
, l

′′
, 1

2

)
j
′′
, j

′′′
)

(
G

†
J ;1

(
(η , l, 1

2) j,(η
′′
, l

′′
, 1

2) j
′′
)

ḠJ ;1

(
(η , l, 1

2) j
′
,
(

η
′′
, l

′′
, 1

2

)
j
′′′
))0;2

0;−2

,

(3.7)
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where

G
†
J ;1

(
(η , l, 1

2) j,(η
′′
, l

′′
, 1

2) j
′′
)
=

(
a

†

(η , l , 1
2 ) j; 1

2

a
†

(η
′′
, l
′′
, 1

2 ) j
′′ ; 1

2

)(J ;1)

ḠJ ;1

(
(η , l, 1

2) j
′
,
(

η
′′
, l

′′
, 1

2

)
j
′′′
)
=
(

ā(η , l , 1
2 ) j

′ ; 1
2

ā(η
′′
, l
′′
, 1

2 ) j
′′′ ; 1

2

)(J ;1)
.

(3.8)

According to the initial and the final orbits of the two decaying neutrons the 2νββ opera-

tor can be decomposed into four parts, i.e. the (g → g), (g → f p), ( f p → g) and ( f p → p f )

parts, respectively. By considering the conservation laws, we can obtain the the expression for the

decomposition of the 2νββ operator as follows

~T (GT )− · ~T (GT )− = β1 G
†
J ;1 (a

†,a†)(g→g)ḠJ ;1(ā, ā)(g→g)

+β2 G
†
J ;1 (a

†,a†)( f p→ f p)ḠJ ;1(ā, ā)( f p→ f p)

+β3 G
†
J ;1(a

†,a†)( f p→g)ḠJ ;1(ā, ā)( f p→g)

+β4G
†
J ;1 (a

†,a†)(g→ f p)ḠJ ;1(ā, ā)(g→ f p)

(3.9)

Due to the seniority-zero restriction on the g-subshell, the only parts of the operator that give non-

zero contribution are those with the subscripts ( f p → f p) and (g → g). The ( f p → f p) part of the

operator can be transformed from the normal shell space into the pseudo space as follows

β2G
†
J ;1 (a

†,a†)( f p→ f p)ḠJ ;1(ā, ā)( f p→ f p) = ∑J ∑ ja, jb ∑ jc, jd ∑la,lc 3
√

(2J +1)(−1) jb+ jc+J

σ ((3, la , 1
2 ) ja, jb) σ ((3, lc , 1

2 ) jc, jd)

{
ja jb 1

jd jc J

}

(
G

†
J ;1

(
(2, l̃a, 1

2) ja, (2, l̃c, 1
2) jc

)
⊗ ḠJ ;1

((
2, l̃a, 1

2

)
jb,
(

2, l̃c, 1
2

)
jd

) )0;2

0;−2

,

(3.10)

where for the normal orbits ja, jb, jc, jd take the value of 1
2 , 3

2 , or 5
2 , la, lc take the value 1 or

3, η = 3; whereas for the pseudo orbits l̃a, l̃c can have the values 0 or 2 and η̃ = 2. The opera-

tors G
†
J ;1

(
(2, l̃a, 1

2) ja, (2, l̃c, 1
2) jc

)
and ḠJ ;1

((
2, l̃a, 1

2

)
jb,
(

2, l̃c, 1
2

)
jd

)
can be recoupled to the

S̃U(4)× S̃U(3) tensors, e.g.

G
†
J ;1

(
(2, l̃a, 1

2) ja,(2, l̃c, 1
2) jc

)
=

(
a

†

(2, l̃a ,
1
2 ) ja; 1

2

a
†

(2, l̃c ,
1
2 ) jc; 1

2

)(J ;1)

= ∑
L̃ac, S̃acK̃ac

∑
(̃λ µ)ac

˜(α1α2α3)ac





l̃a 1
2 ja

l̃ c
1
2 jc

L̃ac S̃ac J





〈
(20) (20)

l̃a l̃ c

∣∣∣∣∣
K̃ac (̃λ µ)ac

L̃ac

〉

(
a

†

λ̃a

a
†

λ̃c

)(̃λ µ)ac,
˜(α1α2α3)ac; J ,1

K̃ac,L̃ac ,S̃ac

, (3.11)

with λ̃a = (20), l̃a;(100)(1
2

1
2), λ̃c = (20),l̃c;(100)( 1

2
1
2 ), and





l̃ 1
2 k

l̃
′

1
2 t

L̃ S̃ J





=

√
(2k+1) (2t +1)

(
2L̃+1

) (
2S̃+1

)




l̃ 1
2 k

l̃
′

1
2 t

L̃ S̃ J





. (3.12)
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The (g → g) part of the the operator can be decomposed into the seniority (or quasispin) tensors:

β1G
†
J ;1 (a

†,a†)(g→g)ḠJ ;1(ā, ā)(g→g) =
220

27 ∑
J

∑
(W1,W2)

C ((W1,W2))
√

2J +1(−1)J−M

{
9/2 9/2 1

9/2 9/2 J

}
T (J 2;(1,1)12)

(W1,W2);0
02−2;0 . (3.13)

Therefore the calculation of NME can be done in the S̃U(4)× S̃U(6) scheme and in the seniority

scheme separately. While the SU(6) ⊃ SU(3) cfp presents a complicity, the calculation in the

seniority model is relatively easy.

3.3 Consideration of the configuration space

For the nuclei 76Ge and 76Se, we take 56Ni as an inert core, and the valence nucleons occupy

the single particle orbits in the d̃s and g subshells, respectively. A remaining problem is how to

distribute the valence nucleons between these two subshells. A recent measurement [1] for the
76Ge and 76Se gives the results of the g-orbit occupancy as (6.48± 0.30(ν), 0.23± 0.25(π)) and

(5.80±0.30(ν), 0.84±0.25(π)), respectively, which can be used as a constraint for the configu-

rations (Nπ ,Nν)g and [Mπ ,Mν ]d̃s
. where the numbers Nρ and Mρ (ρ = π or ν) are the ρ-particle

number in the g- and d̃s-subshell, respectively. In the g-subshell the configuration can be reason-

ably well restricted to (n1,n2)g with n1 = 0,2 and n2 = 4,6,8, respectively for both nuclei. The

corresponding configurations in the d̃s-subshell are [4−n1, 16−n2] for 76Ge and [6−n1, 14−n2]

for 76Se, respectively. We assume the only contribution of many-body states for the g are J2 = 0

(seniority-zero restriction) and S̃ = 0 for the d̃s subshells, then the initial states (for 76Ge) can be

written in as a product of states in the two subspaces:

∣∣76Ge;J+ = 0+,T = 6
〉
= ∑

n1,n2

∑
(̃λ ,µ),{̃ f}

∣∣∣(n1, n2)
(
g9/2

)Ng (0,0)H T2 ;〈0〉J2 = 0
〉

g

∣∣∣∣[4−n1, 16−n2] {̃1N
d̃s} (̃0T1 0) S̃ = 0T1 {̃ f}, (̃λ ,µ)K̃ = L̃ = 0;J1 = 0

〉

d̃s.

, (3.14)

all states in the Ng space with J2 = 0 have (v, t) = (0,0). (̃0T1 0) = {̃ f ∗} (Dynkin-Young diagram

notation) is the S̃U(4) most antisymmetric representation of 20−(n1+n2) nucleons with T1, {̃ f} is

the S̃U(6) representation associated with the conjugate of {̃ f ∗}, (̃λ ,µ) is the S̃U(3) representaton

contained in the S̃U(6) with the highest value of Casimir operator. The final state (76Se) is of the

same form but the relevant quantum numbers need to be replaced. According to the discussion in

the subsection (3.2) on the 2νββ operators with non-zero contribution, there exist only two types of

transition between different configuration spaces, i.e. the transition of (n1,n2)→ (n1 +2, n2 −2)

and that of [4−n1, 16−n2]→ [6−n1, 14−n2]. This feature greatly simplifies the calculation of

the NME of 2νββ decay, a numerical calculation of which is currently underway.

4. Conclusion and discussion

Recent shell model studies on the structure of 76Ge strongly indicates the approximate degen-

eracy in the single particle orbits of p3/2 and f5/2, that supports a symmetry model based on the

6
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pseudo-spin and pseudo-orbits in the subshell of p1/2 − p3/2 − f5/2 (the d̃s-subshell). Therefore

for the relevant nuclei in this region we use the model S̃U(4)× S̃U(6) for the d̃s subshell, whereas

for the g-subshell we adopt the well-established zero-seniority restriction. The model is applied to

the calculation of the NME of the 2νββ (0+1 → 0+1 ) decay 76Ge → 76Se. A prominent feature of

this model is that it accounts for the large l-s coupling as well as the strong interaction between the

protons and neutrons, therefore it is appropriate for the medium nuclei. This formalism may also

facilitate the study of nuclear structure for the medium nuclei in this region, for which a consider-

able amount of data have been accumulated and theoretical explanation based on symmetry models

is relatively scarce.
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