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Calculations of elastic scattering angular distributions for reactions of the weakly bound projectile 6Li with 
targets 28Si and 58Ni at energies above the barrier are performed with the Continuum Discretized Coupled-
Channel method (CDCC). Ground, resonant and non-resonant continuum states of 6Li are included up to 
some maximum energy εmax for which convergence is achieved. In the three-body system, global 
interactions are used for the α-d, α-target and d-target sub-systems. The effect of continuum resonant 
states of  6Li, i.e., l=2, jπ = 3+, 2+ and 1+, on elastic scattering angular distributions is investigated by 
removing these states from the continuum space.  It is found that the calculated elastic scattering angular 
distributions are in good agreement with the measurements for most of the cases studied, where 
consideration of couplings to continuum states are essential. It is also found that the effect of resonances in 
the continuum space is, in some cases important to obtain a good agreement with the data. 
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1.  Introduction 

      Lately, reaction mechanisms involving weakly bound nuclei, both stable and radioactive, 
have been a subject of strong research [1,2,3]. One of the most interesting topics, is the effect of 
breakup on elastic scattering and fusion reaction mechanisms. It is now known that couplings of 
the elastic channel to continuum breakup states of the weakly bound projectile, as well as, 
continuum-continuum couplings are essential to fit the experimental data. This is so since, 
couplings to and between continuum states give rise to a strong repulsive polarization potential 
that decreases the reaction absorption. On the other side, besides the non-capture breakup 
process, other nuclear mechanisms are present for reactions with weakly bound nuclei. For 
instance, sequential and direct complete fusion, incomplete fusion and nucleon transfer. 
Coupled channel calculations show that couplings between the incident elastic channel to fusion 
ones, give place to an attractive dynamical polarization potential VF(E,r) that lowers the nominal 
Coulomb barrier VB. So, the net effect of VF is to enhance fusion mainly for energies around the 
barrier. Similarly, couplings to breakup channels produce a repulsive dynamical polarization 
potential VBU (E,r), that is particularly strong at energies below the barrier. In this energy range, 
VBU (E,r) overcomes VF (E,r), so that the net effect is twofold: a) An increase in the fusion 
barrier, that leads to a net fusion suppression, and b) Most of the reaction cross section is due to 
breakup. Several CDCC calculations have been proposed to calculate the effect of breakup 
couplings  on elastic and fusion cross sections of several weakly bound systems. For instance, 
the 2n-halo 6He on 59Co and 208Pb [4,5], 6Li with targets 28Si, 59Co, 58Ni, 144Sm and 208Pb[4,6-
13], also 7Li with 28Si [14,15]  and 144Sm [16], the n-halo 11Be with 208Pb [17] and the p-halo 8B 
with 58Ni [10,18]. Most of the CDCC calculations in these works, use either, microscopic 
density dependent double-folding interactions with normalization factors NR, NI or Woods-
Saxon potentials obtained from experimental systematic analyses. Except for a few cases, where 
contradictory results are found, e.g., 8B+58Ni [10,18], most of the CDCC calculations show that 
couplings to continuum states of the weakly bound projectile have a strong effect and their 
consideration is very important to attain agreement with the experimental data. However, most 
of the studies for the weakly bound nucleus 6Li do not distinguish the effect that the resonance 
character of the continuum states 3+, 2+ and 1+ can have on elastic scattering. The purpose of 
the present work is to calculate this effect on reactions with the spherical targets 28Si and 58Ni, at 
energies above the Coulomb barrier. The CDCC [6,19] method is used with global d-target and  
α-target interactions, which depend only on the target mass A and incident collision energy Elab. 
The global Woods-Saxon potentials, given in Ref. [20] for the d-target interaction VdT, are 
obtained from a large analysis of experimental elastic and inelastic cross sections for reactions 
of deuteron with a large variety of target masses (12<A<238) and range of incident energies 
Elab<183 MeV. As a matter of fact, this interaction is an improvement of other widely used 
systematic parametrizations for shorter range of masses and energies[21,22,23]. It is the 
intention of the calculations performed in this work, to test this improved parametrization of the 
d-target interaction, when used to describe continuum states of the deuteron after the breakup of 
6Li. The density dependent double-folding Sao Paulo potential (SPP) [24] with adequate α-
particle mass densities is used to describe the α-target interaction VαT. An extensive systematics 
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of nuclear densities has been performed by L.C. Chamon et al., [25] to produce a parameter-free 
interaction. In our calculations, the α-target interaction depends also only on the target mass A 
and the kinetic energy of the α-particle which is a fraction of the initial incident energy of 6Li. 
As for the α-d cluster structure of 6Li, use is made of the Woods-Saxon parametrization given in 
Ref. [26]. Ground, and unbound continuum scattering states of 6Li are generated with this 
interaction. In order to calculate the effect of the resonances of 6Li, we assume that there is a 
gap in the continuum states l=2, s=1,  π= (-) l, that is,  jπ=3+, 2+ and 1+. This will be explained 
in section 2. The results and a discussion of the calculations are presented in section 3 

2.  CDCC formalism for a three-body system 

     In the CDCC formalism [6,19], continuum scattering states are replaced by a limited 
summation over bin-states. A bin-state Nl, l=1,....,lmax is a set of discrete states, with a given 
angular momentum l, with parity (-1)l, total angular momentum j, excitation energy εk,l (respect 
to threshold energy), with discretization step Δεl up to a maximum energy εmax. The Nl bin-states 
are constructed in sequential intervals of energy, i.e., ε i-1< εk  <εi with i=1,Nl, where ε0=0  and 
εNlmax=εmax. Within the CDCC model, bin states ϕ(i)

l,s,j(r), i=1,Nl are square integrable and are 
constructed as a superposition of scattering wave functions within the interval [ ki-1,ki ] with 
excitation energy corresponding to the mean value energy,  

                                                                                                                                    
 That is,  

                                                      
where wi (k) is a weight function that satisfies [6,19], 

                                                                                                                                           
For the case of 6Li, the resonance energies ε i,res and widths Γi  correspond to the resonant states 
3+, 2+ and 1+ with values ε3+= 0.716 MeV and Γ3+= 0.024 MeV, ε2+=2.84 MeV, Γ2+=1.7 MeV 
and ε1+= 4.18 MeV, Γ1+=1.5 MeV, respectively. Within the CDCC formalism, a set of coupled 
channel equations is obtained for the radial part of the relative motion wave function, 

                                   
where β=l,L,J are the quantum numbers of the ground and discrete states, εβ is the eigenvalue of 
internal Hamiltonian of the nuclear system. U (J)

ββ represents the diagonal matrix elements of the 

interactions and U (J) ββ’ non-diagonal elements. In particular, the diagonal matrix element U(J)
00 

(R) corresponds to the optical potential in the elastic channel. Inelastic excitations of the target 
are not explicitely considered in our calculations, while all continuum couplings are included. 
The deuteron-target potential VdT(r) is that taken from Ref. [20]. This potential is the result of a 
large systematic study of existing experimental data of elastic scattering angular distributions 
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and non-elastic cross sections of incident deuteron on a wide range of target nuclei and energies.  
It is given in terms of Woods-Saxon shapes as, 

                 
where f j (r)=1 / [1+exp(r-R j ) / a j ], R j  = r jA 1/3 with j=r,V,S,SO. All potentials strengths, 
diffuseness and radii are given, by the systematics, in terms of the target mass and deuteron 
energy Ed. The non-local, double-folding density dependent interaction SPP is used for the α-
target sub-system. 

                                                                   
r being the separation between the α-particle and target and v(E) their relative velocity. The 
imaginary part is assumed with the same radial dependence as the real part. NR(E) and NI(E) are 
normalization coefficients that take into account polarization effects arising from direct reaction 
couplings and VF (r) is the folding potential given by, 

                                                                    
with Fermi density distributions, ρ= ρ0 i / [ 1+exp ( r – R i ) / a i ].  with i=A1, A2. Global values 
have been determined for the zero- range potential strength V0 = - 456 MeV-fm3, the mass 
density diffuseness a i=0.56 fm and the radius parameter R i=1.31 A 1/3- 0.84 fm, i=A1,A2. Thus 
the SPP is a parameter-free interaction which depends only on the masses A1, A2 of the 
interacting nuclei and ther collision energy Elab. It should be noticed that the non-local feature of 
Eq.(2.6) is not important at energies near the Coulomb barrier. 
 

3. CDCC calculations of elastic scattering using global interactions 
 
      In this section CDCC calculations of elastic scattering angular distributions are presented for 
the projectile 6Li with targets 28Si, 58Ni for incident energies just above the corresponding 
Coulomb barriers. In our calculations, the code FRESCO is used [27], where regarding the VdT 
interaction, care is taken for the radial parameters Rj. This is so, since in the code FRESCO, the 
general relation Rj=rj(A1 

1/3+ A2 
1/3) is considered while a shorter Rj=rj A 1/3 is used in Ref. [20], 

being A1=2 and A the target mass. To calculate the ground state of 6Li, ψ(l=0,Ethre=-1.47 MeV), 
resonant states l=2, jπ=3+, 2+, 1+ and non-resonant breakup discrete states, we have used the 
parametrization for the interaction Vαd(r), given in Ref. [26]. The discretization is made as 
follows; the maximum angular momentum for the relative motion of the α-d fragments is 
lmax=3, larger values do not have any effect on the calculations. So, bin states are constructed for 
l=0, jπ =1+ and l=1, jπ = 0-, 1- , 2- , with step Δε = 0.5 MeV up to εmax = 6.8 MeV. Finer and 
variable steps are used for resonant states  l=2, jπ =3+, 2+, 1+, so as to obtain centroid 
excitation energies and widths close to the corresponding measured values. For bin states with 
l=3, jπ= 4-, 3-, 2-, a larger step Δε = 1.0 MeV is used. Convergence tests at εmax = 7.0, 7.5 and 
8.0 MeV were done with no effect on elastic angular distributions. Similarly, larger steps Δε = 
0.75 and 1.0 MeV were used with no appreciable effect on elastic scattering. Partial waves for 
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the relative motion of 6Li and target are considered up to Lmax = 600 and nuclear and Coulomb 
potential multipoles are included up to LQ= 4 for which convergence is achieved. As regards the 
normalization coefficients of the α-target interaction VαT of Eq. (2.5), we set these as, NR=1 and 
NI=1. This is so, since for the range of collision energies studied in this work, the α-target 
relative kinetic energy is, in most cases, above the corresponding Coulomb barrier, thus 
polarization effects are negligible. The effect of resonances of 6Li (l=2,  j π= 3+, 2+ , 1+) on 
elastic scattering differential cross sections is studied by removing the narrow range of 
continuum bins around themselves. Figs.(1) and (2) show the results for the elastic scattering 
angular distributions for the systems 6Li+28Si and 6Li+58Ni for laboratory energies just above the 
barrier. Solid-lines show the full calculations with all couplings. As seen, in most cases, a close 
agreement with the data is achieved. Dashed-lines represent the results for the effect on elastic 
scattering when the resonances are extracted from the continuum space. For the 6Li+28Si system, 
no appreciable effect is observed, except at Elab=20 MeV at large angles. As for 6Li+58Ni, the 
effect of resonances is small as to be, in most cases within experimental error bars. However, at 
Elab=14 MeV consideration of the resonance continuum is necessary to fit the data. The dotted-
lines in the figures represent the calculations for the elastic channel without continuum 
couplings. As seen, the sole consideration of the optical potential U(J)

00 (R) of Eq. (2.3) is not 
enough to fit the data and couplings to continuum states are essential.  
     In summary, CDCC calculations of the weakly bound projectile 6Li with targets 28Si and 58Ni 
have been performed with global fragment-target interactions dependent on the target mass and 
incident energy. In most cases, the results for the elastic scattering angular distributions at 
energies just above the barrier, closely agree with the data, when couplings to continuum states 
of 6Li are considered. Optical model calculations, without continuum couplings predict elastic 
scattering angular distributions well below the experimental  values. This could mean that 
continuum couplings to breakup channels of 6Li, produce a net repulsive polarization potential 
that increases the Coulomb barrier. This fact, consequently leads to less absorption from the 
elastic channel. On the same footing, the effect of resonance continuum states of 6Li on elastic 
scattering has been studied. The effect appears to be negligible in most cases, since the 
calculations without consideration of these states are within the experimental error bars. 

                                                                         
                      Fig.1. Elastic scattering angular distibutions for 6Li+28Si. See text for details. Data taken from Refs.[28-31]. 
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                Fig.2. Elastic scattering angular distibutions for 6Li+58Ni. See text for details. Data taken from Refs.[32,33]. 
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