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One of the fundamental characteristics of nuclear multifragmentation process is the emission of

complex fragments of intermediate mass. The statistical multifragmentation model provides a

reasonably good description of the distribution of intermediate mass fragments. However, it does

not furnish a complete physical description of the statistical decay, because it does not estimate

the decay widths and lifetimes for emission. An extension ofthis model to include partial widths

and lifetimes for emission interprets the fragmentation process as the near simultaneous limit of a

series of sequential binary decays. In this formalism, the expression describing intermediate mass

fragment emission is almost identical to that of light particle emission. Furthermore at lower

temperatures, similar expressions have been shown to furnish a good description of very light

intermediate mass fragment emission. But this is usually not considered a good approximation to

the emission of heavier fragments. These emissions seem to be determined by the characteristics

of the system at the saddle-point and its subsequent dynamical evolution rather than by the scis-

sion point. In this work we compare the barriers and decay widths of these different formulations

of intermediate fragment emission and analyze the extent towhich they remain distinguishable at

high excitation energy in the35Cl+12C and23Na+24Mg reactions that populate the47V compound

nucleus.
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1. Introduction

We know experimentally that an excited nuclear system can break up into several smaller
nuclei, this is, complex fragments, protons and neutrons. This occurs when a large amount of
energy (on the order of 2 or more MeV per nucleon) is depositedin it. This process of nuclear
multifragmentation is observed in collisions between heavy ions at energies ranging from a few
tens to a few hundreds of MeV per nucleon.

Theoretical and experimental studies of the phenomenon have received great attention from
the nuclear physics community. Initially this was due to thefact that the fragment charge distribu-
tion follows a power law, which was interpreted as a sign of a phase transition in nuclear matter.
However, several subsequent studies have shown that other mechanisms can also explain such be-
havior.

The study of the process of nuclear multifragmentation is not exhausted by the prospect of
observing such a transition phase. Understanding how nuclear matter behaves when heated and
compressed, as happens in the early stages of heavy-ion nuclear reactions leading to the nuclear
multifragmentation process, is also of great importance inastrophysics for understanding the evo-
lution of supernovae. Moreover, this phenomenon is of greattheoretical interest in nuclear physics.
A more complete study of this process would require the ability to describe the dynamical evo-
lution of a quantum many-body system of strongly interacting constituents. An exact solution of
this problem goes far beyond the limits of existing computational resources and formal theoretical
tools. Therefore due to the complexity of the dynamics of such a many-body system and the rich-
ness of phenomena that it presents, many models and approaches have been used to describe its
various facets.

The statistical approach to the problem assumes that the collision between two nuclei leads to
a hot compound system in thermodynamical equilibrium. Differently from dynamical approaches,
statistical models do not attempt to describe the evolutionof the system from the initial stages of
the collision.

2. Statistical emission model

One of the fundamental characteristics of nuclear multifragmentation is the emission of frag-
ments of intermediate mass. The statistical multifragmentation model[1, 2, 3, 4] provides a rea-
sonably good description of the distribution of intermediate mass fragments. However, it does not
furnish a complete physical description of the statisticaldecay, because it does not estimate the
decay widths and lifetimes for emission. In this model, the fragments are formed simultaneously
during the final stage of the expansion of the hot nuclear system. When the multifragmentation
statistical model is extended to include the calculation ofpartial widths, it can be interpreted as the
nearly simultaneous decay limit of a sequential emission model. [5]

To obtain such a model, one first considers the multifragmentation of an initial nucleusZ0, A0

to be only approximately simultaneous. After organizing the fragments into the two fragments
that are the first to separate one can then sum over all partitions that separate into the same first
two fragments,Z1, A1 andZ2, A2. The rate at which this happens is just the rate at which the two
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fragments separate beyond their radius of nuclear interaction. This can be written as

−
d
dt

ωtot (ε0,Z0,A0)→Z1A1,Z2A2
=

1

(2πh̄)3

∫

d3pd3r
r̂ ·~p
µ

θ (r̂ ·~p)δ (r −R) (2.1)

×

∫

ωtot (ε1,Z1,A1)ωtot (ε2,Z2,A2)dε1dε2 δ

(

ε0−Q−VB−
p2

2µ
−

2

∑
j=1

ε j

)

,

whereωtot (ε ,Z,A) is the total density of states of nucleusZ, A at excitation energyε , Q is the
Q-value of the reacton andVB is the effective potential barrier. This expression can be simplified to

2π ΓZ0A0→Z1A1,Z2A2 ωtot (ε0,Z0,A0) =

∫

de
2µe

πh̄2 σabs,Z1A1+Z2A2 (e) (2.2)

×

∫

ωtot (ε1,Z1,A1)ωtot (ε2,Z2,A2)dε1dε2δ (ε0−Q−e− ε1− ε2) ,

The derivative on the left-hand side has been rewritten in terms of the partial decay width,
ΓZ0A0→Z1A1,Z2A2 and the absorption cross section has been substituted for the geometrical cross
section

πR2(1−VB/e)→ σabs,Z1A1+Z2A2 (e) . (2.3)

Here, intermediate mass fragment emission is described by an expression almost identical to
the Weisskopf approximation to light particle emission. Atlower temperatures, similar expressions
have been shown to furnish a good description of very light intermediate mass fragment emission
[6]. However, the emission of heavier fragments seems to be determined by the transition density
at the saddle-point rather than at the scission point. [7, 8,9] The saddle point model is essentially
identical to the transition state model developed to describe the fission of heavier systems. However
we do not expect a significant energy difference between the saddle and scission points in lighter
systems. This suggests that the predictions of the saddle point model and an extended Hauser-
Feshbach type scission should be similar in this case. Here we compare the barriers and decay
widths of these different formulations of intermediate mass fragment emission.

For intermediate mass fragment emission the transition state model approximates the emission
width in terms of the density of states at the saddle point barrier using a thermal excitation energy
obtained by subtracting the collective rotational energy in the sticking limit. However it takes into
account no additonal effects of the angular momenta of the fragments nor of their relative motion.
To estimate the emission width of the scission model of intermediate mass fragment emission, we
extend the expression above to take into account all effectsof (classical) angular momentum as
well as energy conservation. We write

2πΓ(ε0, ~J0;Z1A1, Z2A2)ρ0

(

ε0, ~J0

)

=
1

2(2πh̄)2

∫

δ
(

r̂ ·~L
)

d3LdΩder (2.4)

×

2

∏
j=1

(

ρ j

(

ε j , ~Jj

)

dε jd
3Jj

)

δ
(

~J0−~L− ~J1− ~J2

)

×δ
(

ε0−Q−er −
L2

2µR2
B

−VB− ε1− ε2

)

.
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To evaluate this expression, we use saddle point methods to evaluate most of the integrals,
which also furnish the sticking limit of rotational motion at the scission point, and then use the
high energy limit of the Fermi gas level density to write the remaining product of level densities in
terms of the saddle and scission level densities that the GEMINI++ code expects.

Ericson and Strutinsky proposed such a statistical emission model taking into account classical
angular momentum conservation. [13] The approximation to the partial width of this last equation
is equivalent to the assumption of a classical transmissioncoefficient, for which transmission above
the barrier is unity and below the barrier is null. This should be reasonable at high excitation
energies. Furthermore, the expression taking into accountquantum barrier transmission has been
used previously to describe intermediate mass fragment emission from light nuclei. [14]

3. Results and discussion

We use the GEMINI++ code to perform the calculations. This code was written in C++ by
R. J. Charity, [10] and is the sucessor to his FORTRAN code GEMINI. The GEMINI++ code
calculates the decay of the compound nucleus as a series of binary sequential emissions of light
or intermediate mass fragments or fission. The emission of intermediate mass fragments is in fact
treated as asymmetric fission. The GEMINI++ code uses Monte Carlo sampling based on the
partial decay widths of all processes. This has the advantage of allowing the inclusion of time
differences between emissions, which permits the calculation of proximity effects between the
fragments that can not be included in the conventional approach.

One of the basic differences between the saddle-point and scission-point calculations presented
here are their barriers, which in both cases enter the density of states that determine the partial
emission widths. As the deformation of a nucleus increases,it eventually reaches a form for which
the surface tension can no longer counteract the Coulomb repulsion. This is the saddle point. For
larger deformations, the nucleus will separate into two fragments, which occurs at the scission
point. The saddle point possesses a special stability to deformations in certain directions, for which
the energy passes through a minimum. The geometry of the saddle point, including the role of the
fragment deformation, is fully determined by macroscopic energy calculations.

The deformations at the saddle and scission points are very similar for light nuclei. So, the
deformation necessary for instability is almost the same asthat needed to split the nucleus in two
fragments. As the mass and charge of the nucleus increases the difference in deformation at the two
points increases as well. This occurs due to the fact that theCoulomb repulsion is of longe range,
while the attractive surface tension is due to the short-range nuclear force. Thus the instability that
leads to the fission of heavy nuclei occurs at a much smaller deformation than that at which the
fragments actually separate. One would thus expect the saddle-point and scission-point barriers of
light nuclei to be similar, while the saddle-point barrier of heavier nuclei should be much higher
than the scission-point barrier.

The default mode of the code GEMINI++ uses the saddle point barriers of Sierk and Moretto’s
transition state density formalism [8] to predict the emission cross sections of complex fragments,
which are appropriate for heavier systems. The transition-state model developed by Sanders et
al. [9] is specifically adapted to the region of small mass andis quite successful in describing
asymmetric fragmention in this region. By using the saddle-point configuration as the transition
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Figure 1: Cross sections of the35Cl+12C and23Na+24Mg.

state, this model differs from the extended Hauser-Feshbach method, [7] which treats light-particle
emission and heavy-fragment emission in a similar manner, with the fission probability taken as
being proportional to the available phase space at the scission point.

In 1 we compare GEMINI++ calculations of intermediate mass fragment charge and mass
yields with the experimental data of [7, 9] for the reactions35Cl+12C and23Na+24Mg at Elab=200
and Elab=90 MeV respectively. The two systems have different asymmetric masses, but both
populate the47V compound nucleus. The calculations shown by the blue circles were performed
with the default parameters of the code,[10] using Sierk saddle-point barriers [11] and Moretto’s
transition density formalism[8]. The saddle-point approximation to the fragment yields of Sanders
et al. is given by the yellow points.[9] The pink triangles show the results from GEMINI++ with
barriers obtained using the São Paulo potential at the scission radius. [12] The green diamonds
represent the experimental data. The mass-asymmetric fission barriers are calculate following the
procedure outlined by Sierk [11] in the case of the saddle-point calculations and using the São Paulo
potential in the case of the scission-barrier calculations[12]. We observe that the calculations tend
to underestimate the intermediate mass fragment yields at the lower excitation energy of 1.25 MeV
per nucleon but are in better agreement at the higher energy of 1.79 MeV per nucleon. Both values
of the excitation energy are well below the range of about 3-4MeV per nucleon above which
multifragmentation becomes important.

The calculations using the GEMINI++ code do not present goodagreement with the experi-
mental data in the intermediate mass region at low values of the center-of-mass energy but improve
in agreement as the energy increases. Part of the discrepancy is due to that fact that the excitation
spectrum of the fragments is represented by a continuum density of states. No discrete states are
included in the calculations, but these states are extremely important at low energy, where liitle en-
ergy is available for exciting the fragments. In the calculations using the transition state density, the
strong effect of the binding energy is taken into account by the adding a Wigner energy term to the
the liquid drop energy. An alternative way to include this strong variation would be to incorporate
shell effects in the level density.

In 2 and 3 we compare the Sierk saddle-point barriers (blue triangles) with the scission barriers
of the São Paulo potential (red triangles) for the35Cl + 12C and23Na +23Mg reaction, as a function
of the charge and mass of the fragment of smaller charge. Although the results for both barriers
follow very similar trends as a function of the mass, we find the scission barriers of the São Paulo
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Figure 2: Comparison between the Sierk saddle-point barriers (blue triangles) and scission barriers of the
São Paulo potential (red triangles) for the35Cl + 12C reaction, as a function of the charge and mass of the
fragment of smaller charge.
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Figure 3: Comparison between the Sierk saddle-point barriers (blue triangles) and scission barriers of the
São Paulo potential (red triangles) for the23Na + 24Mg reaction, as a function of the charge and mass of the
fragment of smaller charge.
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potential to be large than the saddle point barriers, ratherthan smaller, as would be expected. This
is in part due to the fact that fragment deformation is included in the definition of the saddle point
geometry, which is based on a full calculations of the energy, while the fragments of the scission
calulation are assumed to be spherical. However, irregularities in the differences between the two
barriers suggest that the saddle-point barriers might still contain some contribution of the fragment
energies.

In future work, we plan to extend the comparision of the barriers to heavier compound systems.
Furthermore, we plan to extend our calculations of intermediate mass fragment emission to higher
excitation energies and to heavier compound nuclear systems and to compare the results with those
of the statistical multifragmentation model as well as withexperimental data. We also plan to
improve our implementation of the scission-point intermediate mass fragment emission model by
including fragment deformation and the effects of nuclear expansion at high temperatute in the
determination of the scission point and intermediate mass fragment emission.
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