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Higher Spin Theory - Part I Rakibur Rahman

1. Motivations & Outline

In Quantum Field Theory fundamental particles carry irreducible unitary representations of
the Poincaré group, and therefore can have arbitrary (integer or half-integer) values of the spin, at
least in principle. The motivations for studying higher-spin (HS) particles are manifold.

1. While free HS fields are fine, severe problems show up as soon as interactions are turned on.
For massless particles, there exist powerful no-go theorems [1, 2, 3, 4, 5] that forbid them
from interacting in flat space with electromagnetism (EM) or gravity when their spin s ex-
ceeds certain value. One would like to evade these theorems in order write down interacting
theories for massless HS fields.

2. Massive HS particles do exist in the form of hadronic resonances, e.g., π2(1670), ρ3(1690),
a4(2040) etc. These particles are composite, and their interactions are described by com-
plicated form factors. However, when the exchanged momenta are small compared to their
masses, one should be able to describe their dynamics by consistent local actions.

3. Massive HS excitations show up in (open) string spectra. In fact, they play a crucial role in
that some of the spectacular features of String Theory, e.g., planar duality, modular invariance
and open-closed duality, rest heavily on their presence.

4. It is conjectured that String Theory describes a broken phase of a HS gauge theory [6, 7, 8, 9].
The underlying HS theory may provide a better understanding of what String Theory is.

5. Vasiliev’s HS gauge theory in AdS4 [8, 10] is conjectured to be holographically dual to O(N)

Vector Models [11], and the first non-trivial checks of the duality appear in [12]. This duality
may be regarded as the simplest non-trivial example of AdS/CFT correspondence, and may
help us understand some aspects of gauge/gravity dualities in general.

In what follows we will present an introduction to HS fields and their interactions. In Sec-
tion 2, we start with construction of free HS theories for massive and massless fields. In Section 3,
we discuss the difficulties that one faces when interactions are turned on. In particular, Section 3.1
presents the various no-go theorems [1, 2, 3, 4, 5] for interacting HS massless fields in flat space,
all of which essentially derive from the fact that interactions are in tension with gauge invari-
ance, while Section 3.2 shows that massive HS fields exhibit superluminal propagation in external
backgrounds−the notorious Velo-Zwanziger problem [13]. Appropriate non-minimal terms may
cure the Velo-Zwanziger acausality, and in Section 4 we show how String Theory provides rem-
edy to this pathology. In Section 5, we consider the fact that interacting massive HS particles are
described by effective field theories, compute a model independent upper bound on the ultraviolet
cutoff for their electromagnetic coupling in flat space, and discuss the implications of this result.
Finally, in Section 6 we study interactions of HS gauge fields by considering the different possi-
bilities of evading the aforementioned no-go theorems, e.g., adding a mass term, working in D = 3
or in AdS space, or considering higher-derivative interactions. We work out a simple example of
a 1− 3

2 −
3
2 non-abelain cubic coupling in flat space by using the BRST-antifield formalism and

explore its higher-order consistency.
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2. Construction of Free Higher Spin Theories

The task of constructing a theory of HS fields dates back to 1936, when Dirac tried to gener-
alize his celebrated spin- 1

2 equation [14]. A systematic study of HS particles, though, was initiated
by Fierz and Pauli in 1939 [15]. Their approach was field theoretic that focused on the physi-
cal requirements of Lorentz invariance and positivity of energy. The works of Wigner on unitary
representations of the Poincaré group [16] and of Bargmann and Wigner on relativistic wave equa-
tions [17], however, made it clear that one could replace positivity of energy by the requirement
that a one-particle state carries an irreducible unitary representation of the Poincaré group.

2.1 Massive Fields

The two Casimir invariants of the Poincaré group are

C1 = PµPµ , C2 =W µWµ , (2.1)

where W µ ≡ −1
2 εµνρσ JνρPσ is the Pauli-Lubanski pseudovector. They define respectively mass

and spin−the two basic quantum numbers−a field may possess. Let us consider the first Wigner
class, which corresponds to a physical massive particle of mass m and spin s. In this case, we have
C1 =−m2 and C2 = m2s(s+1). The transformation properties under the Lorentz group is uniquely
determined for a bosonic field by the usual choice of the representation D

( s
2 ,

s
2

)
. The field is then

a totally symmetric rank-s tensor, φµ1...µs , which is traceless:

η
µ1µ2φµ1µ2...µs = 0. (2.2)

The Casimir C1 then demands that the Klein-Gordon equation be satisfied:

(�−m2)φµ1...µs = 0. (2.3)

The representation D
( s

2 ,
s
2

)
is however reducible under the rotation subgroup, because it contains

all spin values from s down to 0. The Casimir C2 requires that all lower spin values be eliminated;
this is done by imposing the divergence/transversality condition:

∂
µ1φµ1...µs = 0. (2.4)

The latter is a necessary condition in order for the total energy to be positive definite [15].
How many degrees of freedom (DoF) does this field propagate in D space-time dimensions?

Note that the number of independent components of symmetric rank-s tensor is given by

C(D+ s−1, s) =
(D−1+ s)!
s!(D−1)!

. (2.5)

The tracelessness condition is a symmetric rank-(s−2) tensor that removes C(D−3+ s, s−2) of
these components. Similarly, the divergence constraint (2.4) should eliminate C(D− 2+ s, s− 1)
many, but its trace part has already been incorporated in the tracelessness of the field itself, so that
the actual number is less by C(D−4+ s, s−3). Then the total number of propagating DoFs are

Db,m6=0 = C(D−1+ s, s)−C(D−3+ s, s−2)−C(D−2+ s, s−1)+C(D−4+ s, s−3)

= C(D−4+ s, s)+2C(D−4+ s, s−1). (2.6)

3
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In particular when D = 4, this number reduces to 2s+1 as expected.
A fermionic field of spin s = n+ 1

2 , on the other hand, is represented by a totally symmetric
tensor-spinor of rank n, ψµ1...µn , which is γ-traceless:

γ
µ1ψµ1...µn = 0. (2.7)

It transforms as the D
(n+1

2 , n
2

)⊕
D
(n

2 ,
n+1

2

)
representation of the Lorentz group , and satisfies

(6∂−m)ψµ1...µn = 0, (2.8)

∂
µ1ψµ1...µn = 0. (2.9)

The counting of DoFs is analogous to that for bosons. In D dimensions, a symmetric rank-n
tensor-spinor has C(D+n−1, n)×2[D]/2 independent components, where [D]≡D+ 1

2

[
(−1)D−1

]
.

The γ-trace and divergence constraints, being symmetric rank-(n− 1) tensor-spinors, each elimi-
nates C(D+n−2, n−1)×2[D]/2 of them. But there is an over-counting of C(D+n−3, n−2)×
2[D]/2 constraints, since only the traceless part of the divergence condition (2.9) should be counted.
The number of dynamical DoFs−fields and conjugate momenta−is therefore

D f ,m 6=0 = [C(D+n−1, n)−2C(D+n−2, n−1)+C(D+n−3, n−2)]×2[D]/2

= C(D−3+n, n)×2[D]/2. (2.10)

In D = 4 in particular, this is 2n+2 = 2s+1 as expected.
Fierz and Pauli noted in [15] that attempts to introduce electromagnetic interaction at the

level of the equations of motion (EoM) and constraints lead to algebraic inconsistencies for spin
greater than 1. If one modifies the Eqs. (2.2)-(2.4) and (2.7)-(2.9) by directly replacing ordinary
derivatives with covariant ones, they are no longer mutually compatible1. To avoid such difficulties
it was suggested that all equations involving derivatives be obtainable from a Lagrangian. This
is possible only at the cost of introducing lower-spin auxiliary fields, which must vanish when
interactions are absent.

Fronsdal [18] and Chang [19] spelled out a procedure for introducing these auxiliary fields
to construct HS Lagrangians. Singh and Hagen [20] achieved the feat in 1974 by writing down
an explicit form of the Lagrangian for a free massive field of arbitrary spin. The Singh-Hagen
Lagrangian for an integer spin s is written in terms of a set of symmetric traceless tensor fields of
rank s,s−2,s−3, ...,0. For a half-integer spin s = n+ 1

2 , the Lagrangian incorporates symmetric γ-
traceless tensor-spinors: one of rank n, another of rank n−1, and doublets of rank n−2,n−3, ...,0.
When the Eqs. (2.2)-(2.4) and (2.7)-(2.9) are satisfied, all the lower spin fields are forced to vanish.

To understand the salient features of the Singh-Hagen construction, we consider the massive
spin-2 field, which is described by a symmetric traceless rank-2 tensor φµν . Let us try to incorporate
the Klein-Gordon equation, (�−m2)φµν = 0, and the transversality condition, ∂ µφµν = 0, into a
Lagrangian as

L =−1
2(∂µφνρ)

2− 1
2 m2

φ
2
µν +

1
2 α(∂ µ

φµν)
2, (2.11)

where the constant α is to be determined. While varying the above action one must keep in mind
that φµν is symmetric traceless. One therefore obtains the following EoMs:

(�−m2)φµν − 1
2 α
[
∂

ρ
∂(µφν)ρ − 2

D ηµν∂
ρ

∂
σ

φρσ

]
= 0, (2.12)

1We will work out an example of this inconsistency in Section 3.
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where D is the space-time dimensionality. The divergence of Eq. (2.12) gives

[(α−2)�+2m2]∂ µ
φµν +α

(
1− 2

D

)
∂ν∂

ρ
∂

σ
φρσ = 0. (2.13)

The transversality condition can be recovered by setting α = 2 as well as requiring ∂ µ∂ νφµν = 0.
The latter condition, however, does not follow from the EoMs. This problem can be taken care
of by introducing an auxiliary spin-0 field φ , so that the condition ∂ µ∂ νφµν = 0 follows from the
Lagrangian. Let us add the following terms to the Lagrangian (2.11):

Ladd = β1(∂µφ)2 +β2φ
2 +φ ∂

µ
∂

ν
φµν , (2.14)

where β1,2 are constants. The double divergence of the φµν EoMs now gives

[(2−D)�−Dm2]∂ µ
∂

ν
φµν +(D−1)��φ = 0. (2.15)

The EoM for the auxiliary scalar φ , on the other hand, reduces to

∂
µ

∂
ν
φµν −2(β1�−β2)φ = 0. (2.16)

Eqs. (2.15)-(2.16) comprise a linear homogeneous system in the variables ∂ µ∂ νφµν and φ . The
condition ∂ µ∂ νφµν = 0 and the vanishing of the auxiliary field must follow if the associated deter-
minant does not vanish. The latter is given by

∆ = [2(D−2)β1− (D−1)]��+2[Dm2
β1− (D−2)β2]�−2Dm2

β2. (2.17)

Note that ∆ becomes algebraic, not containing �, proportional to m2 and hence non-zero if

β1 =
(D−1)

2(D−2) , β2 =
m2D(D−1)
2(D−2)2 , D > 2. (2.18)

Thus one constructs the following Lagrangian for a massive spin-2 field

L =−1
2(∂µφνρ)

2 + (∂ µ
φµν)

2 + (D−1)
2(D−2)(∂µφ)2 + φ ∂

µ
∂

ν
φµν − 1

2 m2
[
φ

2
µν −

D(D−1)
(D−2)2 φ

2
]
. (2.19)

One can now check that this Lagrangian yields ∂ µ∂ νφµν = 0 and φ = 0, so that the Klein-Gordon
equation and the transversality condition follow from it.

One can carry out this procedure for higher spins to find that the following pattern emerges:
For an integer spin s, one must successively obtain ∂ µ1 ...∂ µk φµ1...µs = 0, for k = 2,3, ...,s. At
each value of k one needs to introduce an auxiliary symmetric traceless rank-(s− k) tensor field.
Similarly for a half-integer spin s = n+ 1

2 , the transversality condition, ∂ µ1ψµ1...µn = 0, can be
obtained by introducing a symmetric γ-traceless tensor-spinor of rank n−1, ψµ1...µn−1 , provided that
one also satisfies the conditions: ∂ µ1∂ µ2ψµ1...µn = 0 and ∂ µ1ψµ1...µn−1 = 0. These can be achieved
by successively obtaining ∂ µ1 ...∂ µk ψµ1...µn = 0 and ∂ µ1 ...∂ µk ψµ1...µn−1 = 0, for k = 2,3, ...,n. Then
for each k one must introduce two symmetric γ-traceless rank-(n− k) tensor-spinors. The explicit
form of the Lagrangian for an arbitrary spin is rather complicated and is given in Ref. [20].

5
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2.2 Massless Fields

In 1978, Fronsdal and Fang [21] considered the massless limit of the Singh-Hagen Lagrangian
to find considerable simplification of the theory. For the bosonic case, all the auxiliary fields de-
couple in this limit, except for the one with the highest rank s−2. Furthermore, the two symmetric
traceless rank-s and rank-(s−2) tensors can be combined into a single symmetric tensor, Φµ1...µs ,
which is double traceless: ηµ1µ2ηµ3µ4Φµ1...µs = 0. The Lagrangian reduces to [21]

L = −1
2(∂ρΦµ1...µs)

2 + 1
2 s(∂ ·Φµ2...µs)

2 + 1
2 s(s−1)

(
∂ ·∂ ·Φµ3...µs

)
Φ
′ µ3...µs

+1
4 s(s−1)(∂ρΦ

′
µ3...µs

)2 + 1
8 s(s−1)(s−2)(∂ ·Φ′µ4...µs

)2, (2.20)

where prime denotes trace: Φ′µ3...µs
≡ ηµ1µ2Φµ1...µs , and ∂ · denotes divergence: ∂ ·Φµ2...µs ≡

∂ µ1Φµ1...µs . The Lagrangian (2.20) has acquired a gauge invariance with a symmetric traceless
gauge parameter λµ1...µs−1 :

δΦµ1...µs = ∂(µ1λµ2...µs), λ
′
µ3...µs−1

= 0. (2.21)

Let us illustrate the Fronsdal-Fang formulation [21] by considering again the spin-2 case. In
the massless limit, the Singh-Hagen spin-2 Lagrangian (2.19) reduces to

L =−1
2(∂µφνρ)

2 + (∂ ·φµ)
2 + (D−1)

2(D−2)(∂µφ)2 + φ ∂ ·∂ ·φ . (2.22)

We combine φµν and φ into a single field hµν :

hµν ≡ φµν +
1

D−2 ηµνφ . (2.23)

The tracelessness of φµν then gives

h′ ≡ hµ

µ = D
D−2 φ . (2.24)

This reduces the Lagrangian (2.22) to

L =−1
2(∂µhνρ)

2 + (∂ ·hµ)
2 + 1

2(∂µh′)2 + h′ ∂ ·∂ ·h. (2.25)

Here the new field hµν is symmetric but not traceless. The Lagrangian (2.25) is nothing but the
linearized Einstein-Hilbert action with hµν identified as the metric perturbation around Minkowski
background. This describes a massless spin-2 particle, and the corresponding gauge symmetry is
just the infinitesimal version of coordinate transformations:

δhµν = ∂(µλν). (2.26)

Gauge invariance and the trace conditions on the field and the gauge parameter play a crucial
role in the Fronsdal-Fang construction in that they ensure absence of ghosts, and give the correct
number of propagating DoFs. To do the DoF count, we write down the EoMs that follow from the
Lagrangian (2.20):

Fµ1...µs− 1
2 η(µ1µ2F

′
µ3...µs)

= 0, (2.27)

6
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where Fµ1...µs is the Fronsdal tensor defined as

Fµ1...µs ≡�Φµ1...µs−∂(µ1∂ ·Φµ2...µs)+∂(µ1∂µ2Φ
′
µ3...µs)

. (2.28)

Another equivalent form of the EoMs is the so-called Fronsdal form:

Fµ1...µs = 0. (2.29)

This contains precisely the correct number of conditions to determine the components of the sym-
metric double-traceless field Φµ1...µs because F ′′

µ5...µs
is vanishing. A symmetric rank-s tensor with

vanishing double trace has C(D− 1+ s, s)−C(D− 5+ s, s− 4) independent components in D
dimensions. Now that Eq. (2.28) enjoys the gauge invariance (2.21), the symmetric traceless rank-
(s−1) gauge parameter enables us to remove C(D−2+ s, s−1)−C(D−4+ s, s−3) components
by imposing an appropriate covariant gauge condition, e.g.,2

Gµ2...µs ≡ ∂ ·Φµ2...µs− 1
2 ∂(µ2Φ

′
µ3...µs)

= 0, (2.30)

where Gµ2...µs is traceless because Φ′′µ5...µs
= 0. This reduces Eq. (2.29) to

�Φµ1...µs = 0. (2.31)

Thus Φµ1...µs indeed describes a massless field. Eq. (2.30) however does not completely fix the
gauge since gauge parameters satisfying �λµ1...µs−1 = 0 are still allowed. Therefore, we can gauge
away another set of C(D− 2+ s, s− 1)−C(D− 4+ s, s− 3) components. Thus the total number
of propagating DoFs turns out to be [22]:

Db,m=0 =C(D−5+ s, s)+2C(D−5+ s, s−1). (2.32)

In particular, this leaves us exactly with 2 DoF for all s in D = 4.
For the fermionic case too we can take the massless limit of the Singh-Hagen Lagrangian.

For spin s = n+ 1
2 , one is left in this case only with three symmetric γ-traceless tensor-spinors of

rank n,n− 1 and n− 2 respectively; the other auxiliary fields decouple completely. These three
can be combined into a single symmetric rank-n tensor-spinor, Ψµ1...µn , which is triple γ-traceless:
γµ1γµ3γµ3Ψµ1...µn = 0. This leads to the following Lagrangian [21]:

iL = Ψ̄µ1...µn 6∂ Ψ
µ1...µn +n ¯6Ψµ2...µn

6∂ 6Ψµ2...µn− 1
4 n(n−1)Ψ̄′µ3...µn

6∂ Ψ
′µ3...µn

−n
[ ¯6Ψµ2...µn

∂ ·Ψµ2...µn−h.c.
]
+ 1

2 n(n−1)
[
Ψ̄
′
µ3...µn

∂ · 6Ψµ3...µn−h.c.
]
. (2.33)

The resulting EoMs read

Sµ1...µn− 1
2 γ(µ1 6S µ2...µn)−

1
2 η(µ1µ2S

′
µ3...µn)

= 0, (2.34)

where the fermionic Fronsdal tensor Sµ1...µn is given by

Sµ1...µn ≡ i
[
6∂ Ψµ1...µn−∂(µ1 6Ψµ2...µn)

]
. (2.35)

2This is the arbitrary-spin generalization of the Lorenz gauge for s = 1 and the de Donder gauge for s = 2.

7
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One can also rewrite the EoMs in the Fronsdal form:

Sµ1...µn = 0. (2.36)

This equation contains the appropriate number of independent components because Sµ1...µn is triple
γ-traceless if Ψµ1...µn is. The Lagrangian (2.33) and the EoMs (2.34)-(2.36) enjoy a gauge symme-
try with a symmetric γ-traceless tensor-spinor parameter εµ1...µn−1 :

δΨµ1...µn = ∂(µ1εµ2...µn), γ
µ1εµ1...µn−1 = 0. (2.37)

To get the DoF count let us note that a symmetric triple γ-traceless rank-n tensor-spinor
has [C(D+n−1, n)−C(D+n−4, n−3)]× 2[D]/2 components in D dimensions. However, the
γ-traceless part of Ψ0µ2...µn is actually non-dynamical as Eq. (2.36) shows. Therefore, we have
[C(D+n−2, n−1)−C(D+n−3, n−2)]× 2[D]/2 constraints. Now, the symmetric γ-traceless
gauge parameter εµ1...µn−1 enables us to choose, for example, the gauge3

Gµ2...µn ≡ 6Ψµ2...µn
− 1

D−4+2n γ(µ2Ψ
′
µ3...µn)

= 0, (2.38)

where Gµ2...µn is γ-traceless because 6Ψ′µ4...µn
= 0. This allows further gauge transformations for

which the gauge parameter satisfies

6∂ εµ2...µn− 2
D−4+2n γ(µ2∂ · εµ3...µn) = 0. (2.39)

Note that the left-hand side of Eq. (2.39) is γ-traceless because εµ2...µn is. The gauge condi-
tion (2.38) and the residual gauge fixing eliminate [C(D+n−2, n−1)−C(D+n−3, n−2)]×
2[D]/2 components each. In this way, one finds that the number of dynamical DoFs−fields and
conjugate momenta−is [22]:

D f ,m=0 =C(D−4+n, n)×2[D]/2. (2.40)

In D = 4 in particular, this is 4 as expected. We parenthetically remark that the gauge fixing (2.38)
does not reduce the EoMs (2.36) to the Dirac equation. However, one can use part of the residual
gauge invariance, which satisfies the condition (2.39), to set Ψ′µ3...µn

= 0. Then the field equations
become 6∂ Ψµ1...µn = 0, which indeed describe a massless fermion.

Apart from their gauge theoretic and geometric aspects4, massless HS theories are interesting
since they give rise to the massive theories through proper Kaluza-Klein (KK) reductions [24]. This
construction−much simpler than the original Singh-Hagen one−justifies the choice of auxiliary
fields in the latter. For the bosonic case, for example, a massless spin-s Lagrangian in D + 1
dimensions KK reduces in D dimensions to a theory containing symmetric tensor fields of spin
0 through s. The (D+ 1)-dimensional gauge invariance gives rise to the Stückelberg symmetry
in D dimensions. The tracelessness of the higher dimensional gauge parameter has non-trivial
consequences; one can gauge away some, but not all, of the auxiliary (Stückelberg) fields. The
gauge-fixed Lagrangian is then equivalent to the Singh-Hagen one up to field redefinitions [24].

3Here the gauge condition does not involve derivatives, so that it cannot convert constraints into evolution equations.
This is in contrast with the bosonic case where the gauge condition (2.30) renders the non-dynamical components−the
traceless part of Φ0µ2...µs−dynamical as seen from Eq. (2.31).

4One can construct HS analogs of the spin-2 Christoffel connection [22]−a hierarchy of generalized Christoffel
symbols linear in derivatives of the field with simple gauge transformation properties. The wave equations are also
very simple in terms of these objects. The trace conditions on the HS field and the gauge parameter can also be easily
understood in this approach. See also Ref. [23] for geometric formulations of HS gauge fields.

8
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3. Turning on Interactions

As we already mentioned, turning on interactions for HS fields at the level of EoMs and con-
straints, by replacing ordinary derivatives with covariant ones, results in inconsistencies. Let us
take, for example, the naïve covariant version of Eqs. (2.2)-(2.4) for massive spin 2 coupled to EM(

D2−m2)
φµν = 0, D ·φµ = 0, φ

′ = 0, (3.1)

where Dµ = ∂µ + ieAµ . Now the Klein-Gordon equation and the transversality condition give[
Dµ ,D2−m2]

φµν = 0. (3.2)

The non-commutativity of covariant derivatives then results in unwarranted constraints. For exam-
ple, for a constant EM field strength Fµν , one obtains

ieFµρDµφρν = 0. (3.3)

This constraint does not exist when the interaction is turned off, so that the system of equations (3.1)
does not describe the same number of DoFs as the free theory. Such difficulties can be avoided,
as Fierz and Pauli suggested [15], by taking recourse to the Lagrangian formulation. However,
as we will see in Sections 3.1 and 3.2, the Lagrangian approach is not free of difficulties either;
inconsistencies show up for both massless and massive HS fields when interactions are present.

3.1 No-Go Theorems for Massless Fields

No massless particle with s > 2 has been observed in Nature. Neither is there any known
string compactification that gives a Minkowski space with massless particles of spin larger than
two. Indeed, interactions of HS gauge fields in flat space are severely constrained by powerful
no-go theorems [1, 2, 3, 4, 5]. Below we will closely follow Ref. [5] to give an overview of some
of the most important no-go theorems.

3.1.1 Weinberg (1964)

One can show, in a purely S-matrix-theoretic approach, that there are obstructions to consistent
long-range interactions mediated by massless bosons with s > 2 [1]. Let us consider an S-matrix
element with N external particles of momenta pµ

i , i = 1, ...,N and a massless spin-s particle of
momentum qµ . The matrix element factorizes in the soft limit q→ 0 as:

S(p1, ..., pN ,q,ε)→
N

∑
i=1

gi

[
pµ1

i ...pµs
i εµ1..µs(q)

2q · pi

]
S(p1, ..., pN), (3.4)

where εµ1..µs(q) is the polarization tensor of the spin-s particle; it is transverse and traceless:

qµ1εµ1µ2...µs(q) = 0, ε
′
µ3..µs

(q) = 0. (3.5)

The polarization tensor is redundant in that it has more components than the physical polarizations
of the massless particle. This redundancy is eliminated by demanding that the matrix element
vanish for spurious polarizations, i.e., for

ε
(spur)
µ1...µs(q)≡ q(µ1αµ2..µs)(q), (3.6)

9
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where αµ1...µs−1 is also transverse and traceless. One finds from Eq. (3.4) that the spurious polar-
izations decouple, for any generic momenta pµ

i , only if

N

∑
i=1

gi p
µ1
i ...pµs−1

i = 0. (3.7)

For s = 1, this is possible when ∑gi = 0. This is nothing but the conservation of charge. For s = 2,
Eq. (3.7) reduces to ∑gi p

µ

i = 0, which can be satisfied for generic momenta if (i) ∑ pµ

i = 0, and (ii)
gi = κ . The first condition imposes energy-momentum conservation, while the second one requires
all particles to interact with the same strength κ with the massless spin 2 (graviton). The latter is
simply the equivalence principle. For s≥ 3, Eq. (3.7) has no solution for generic momenta.

This argument does not rule out massless bosons with spin larger than 2, but say that they
cannot give rise to long-range interactions. Similar arguments were used in Ref. [2] for half-integer
spins to forbid interacting massless fermions with s≥ 5

2 . These theorems leave open the possibility
that massless HS particles may very well interact but can mediate only short-range interactions.

3.1.2 Aragone-Deser (1979)

In order to completely rule out massless HS particles, one should consider a truly universal
interaction which no particle can avoid. Gravitational coupling is one such interaction. In fact,
Eq. (3.7) shows that the graviton interacts universally with all matter in the soft limit q→ 0.

Aragone and Deser [3] studied the gravitational coupling of a spin- 5
2 gauge field to find that

such a theory is fraught with grave inconsistencies: the unphysical gauge modes decouple only
in the free theory. The system of a spin- 5

2 field−described by the tensor-spinor ψµν−minimally
coupled to gravity, is governed by the action:

S =−i
∫

dDx
√
−g
[
ψ̄µν 6∇ψ

µν +2 ¯6ψµ 6∇6ψµ − 1
2 ψ̄
′ 6∇ψ

′+
(

ψ̄
′
∇ · 6ψ−2 ¯6ψµ∇ ·ψµ −h.c.

)]
. (3.8)

The redundancy in the field ψµν should be eliminated, as in the free case, by the gauge invariance

δψµν = ∇(µεν), γ
µ

εµ = 0. (3.9)

Under this gauge transformation, however, the action (3.8) transforms as

δS∼
∫

dDx
√
−g
(

iε̄µγνψαβ Rµανβ +h.c.
)
, (3.10)

i.e., the action is invariant only in flat space where the Riemann tensor vanishes. In other words,
the gauge modes do not decouple for an interacting theory. It is easy to see that local non-minimal
terms, regular in the neighborhood of flat space, do not come to the rescue [3].

The Aragone-Deser no-go theorem is based on Lagrangian formalism, and therefore has a
very important implicit assumption: locality. Some non-locality in the Lagrangian appearing, for
example, in the guise of a form factor for gravitational couplings may remove the difficulties. It is
also possible to have a non-minimal description involving a larger gauge invariance than (3.9). All
these issues can be addressed in the S-matrix language by considering, for example, scattering of
massless HS particles off soft gravitons.

10
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3.1.3 Weinberg-Witten (1980) & Its Generalization

Weinberg and Witten took the S-matrix approach to prove the following important theorem [4]:
“A theory that allows the construction of a conserved Lorentz covariant energy-momentum tensor
Θµν for which

∫
Θ0νd3x is the energy-momentum four-vector cannot contain massless particles of

spin s > 1.” They considered in 4D a particular matrix element: the elastic scattering of a massless
spin-s particle off a soft graviton. The initial and final momenta of the spin-s particle are p and p+q
respectively, while the polarizations are identical, say +s. The off-shell graviton has a space-like
momentum q→ 0. The matrix element is completely determined by the equivalence principle:

lim
q→0
〈p+q,+s|Θµν |p,+s〉= pµ pν , (3.11)

where the normalization 〈p|p′〉= (2π)32p0δ 3(~p−~p ′) has been used. For q2 6= 0, one can choose
the “brick wall” frame [4], in which pµ = ( 1

2 |~q|,
1
2~q) and qµ = (0,−~q), let us consider the effect

of a rotation R(θ) by an angle θ around the~q direction. The one-particle states transform as

R(θ)|p,+s〉 = exp(±iθs)|p,+s〉, (3.12)

R(θ)|p+q,+s〉 = exp(∓iθs)|p+q,+s〉. (3.13)

The difference of the signs in the exponents arises because R(θ) amounts to a rotation of −θ

around ~p+~q =−~p. Under spatial rotations, Θµν decomposes into two real scalars, a vector and a
symmetric traceless rank-2 tensor. These fields will be represented by spherical tensors if we work
in the basis in which the total angular momentum and projection thereof along the ~q-direction are
the commuting variables. Combining the two real scalars into a complex one, we have the spherical
tensors: Θ0,0, Θ1,m with m = 0,±1 and Θ2,m with m = 0,±1,±2. Now rotational invariance and
the transformations (3.12)-(3.13) give us

〈p+q,+s|R†
Θl,mR|p,+s〉 = eiθm〈p+q,+s|Θl,m|p,+s〉

= e±2iθs〈p+q,+s|Θl,m|p,+s〉. (3.14)

Since |m| ≤ 2, the only solution to this equation for s > 1 is that the matrix element must van-
ish. Because the helicities are Lorentz invariant, the Lorentz covariance of Θµν implies, through
Eq. (3.14), that the matrix element vanishes in all frames as long as q2 6= 0. This is in direct
contradiction with the equivalence principle as Eq. (3.11) gives a non-vanishing matrix element.

Note that the theorem does not apply to theories which do not have a Lorentz covariant energy-
momentum tensor, e.g., supersymmetric theories and general relativity. In order to have a gauge in-
variant stress-energy tensor in these theories one has to sacrifice manifest Lorentz covariance [25].
The same holds true for HS gauge fields. At any rate, the Weinberg-Witten theorem can be extended
to such theories by introducing unphysical states that correspond to spurious polarizations [5]. Un-
der Lorentz transformations, these unphysical polarizations mix with the physical ones such that
the Θµν matrix elements are Lorentz covariant. The spurious states however must decouple from
all physical matrix elements. By considering one-graviton matrix elements one can show that for
gravitationally interacting massless fields with s > 2 decoupling of the unphysical states is incom-
patible with the principle of equivalence [5]. Therefore, no massless HS particle with spin larger
than 2 can be consistently coupled to gravity in flat space. Similarly, one can show that no massless
particles with s≥ 3

2 can have minimal EM coupling in flat space [5].

11
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3.2 Pathologies of Interacting Massive Higher Spins

For massive HS particles, gauge transformation is no longer a symmetry of the action. So they
are not subject to such algebraic inconsistencies as their massless counterparts experience in the
presence of interactions. However, they are plagued with other pathologies as we will see below.

For simplicity, let us consider the massive spin-2 case. We begin by reviewing the key proper-
ties of the free theory, described by the Fierz-Pauli Lagrangian [15]:

LFP =−1
2 (∂µϕνρ)

2 +(∂µϕ
µν)2 + 1

2 (∂µϕ
′)2 −∂µϕ

µν
∂νϕ

′− 1
2 m2[ϕ2

µν −ϕ
′2]. (3.15)

Note that this Lagrangian can be obtained either from the Lagrangian (2.19) by the field redefini-
tion: ϕµν = φµν +

1
D−2 ηµνφ , that combines φµν and φ into a single traceful field ϕµν , or from a

Kaluza-Klein reduction of the Lagrangian (2.25) with a single dimension compactified on a circle
of radius 1/m. The corresponding EoMs read

Rµν ≡ (�−m2)ϕµν −ηµν(�−m2)ϕ ′+∂µ∂νϕ
′−∂(µ∂ ·ϕν)+ηµν∂ ·∂ ·ϕαβ = 0. (3.16)

Taking divergences and the trace of Eq. (3.16) leads to

∂ µRµν ≡−m2(∂ ·ϕν −∂νϕ ′) = 0, (3.17)

∂ µ∂ νRµν ≡−m2(∂ ·∂ ·ϕ−�ϕ ′) = 0, (3.18)

Rµ

µ ≡ (D−2)(∂ ·∂ ·ϕ−�ϕ ′)+ [(D−1)m2]ϕ ′ = 0. (3.19)

Combining Eqs. (3.18) and (3.19) one arrives at an interesting consequence,

[(D−1)m2]ϕ ′ = 0. (3.20)

Thus, for m2 6= 0 and D > 1 one is led to the dynamical trace constraint:

ϕ = 0 . (3.21)

Then from Eq. (3.17) one gets the transversality condition:

∂ ·φµ = 0, (3.22)

so that finally Eq. (3.16) reduces to the Klein-Gordon equation

(�−m2)ϕµν = 0, (3.23)

which is manifestly hyperbolic and causal. Eqs. (3.21)-(3.23) are the simplest instance of a Fierz–
Pauli system, which originates from the Lagrangian (3.15) in arbitrary space-time dimensions.

Now let us complexify the spin-2 field in the Lagrangian (3.15) in order to minimally couple
it to a constant EM background. The minimal coupling is ambiguous because covariant derivatives
do not commute, so that we are actually led to a family of Lagrangians containing one parameter,
which we call the gyromagnetic ratio g (see, e.g., [26]):

L = −|Dµϕνρ |2 +2|D ·ϕµ |2 + |Dµϕ
′|2 +(ϕ∗µνDµDν

ϕ
′+ c.c.)−m2(ϕ∗µνϕ

µν −ϕ
′∗

ϕ
′)

+2iegTr(ϕ ·F ·ϕ∗). (3.24)
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The resulting EoMs are

0 = Rµν ≡ (D2−m2)
(
ϕµν −ηµνϕ

′)+ 1
2 D(µDν)ϕ

′−D(µD ·ϕν)+ηµνD ·D ·ϕ + iegFρ(µϕ
ρ

ν) .

(3.25)
Combining the trace and the double divergence of Eq. (3.25) gives(D−1

D−2

)
m4

ϕ
′ = ie(2g−1)FµνDµD ·ϕν +(g−2)e2FµρF ν

ρ ϕµν − 3
4 e2FµνFµνϕ

′. (3.26)

The first term on the right-hand side signals a potential breakdown of the DoF count, since the
divergence constraint of the free theory is turned into a propagating field equation unless g = 1

2 .
The unique minimally coupled model that does not give rise to a wrong DoF count has therefore
g = 1

2 , and is precisely the Federbush Lagrangian of [27]. With this choice, one obtains

D ·ϕν −Dνϕ ′ = 3
2(ie/m2)

[
Fρσ Dρϕσν −FνρD ·ϕρ +FνρDρϕ ′

]
, (3.27)

D ·D ·ϕ−D2ϕ ′ = 3
2(1/m2)

[
Tr(F ·ϕ ·F)− 1

2 TrF2ϕ ′
]
, (3.28)

ϕ ′ =−3
2

(D−2
D−1

)
(e/m2)2

[
Tr(F ·ϕ ·F)− 1

2 TrF2ϕ ′
]
. (3.29)

The trace constraint can also be rewritten as

ϕ
′ =−

3
2

(D−2
D−1

)
(e/m2)2 Tr(F ·ϕ ·F)

1− 3
4

(D−2
D−1

)
(e/m2)2 TrF2

. (3.30)

Unlike in the free theory, the trace does not vanish in the presence of the EM background.
This expression, however, makes perfect sense for small values of the EM field invariants in units
of m2/e . If some invariant were O(1) in those units, a number of new phenomena, including
Schwinger pair production [28] and Nielsen-Olesen instabilities [29], would appear. The very ex-
istence of these instabilities implies that any effective Lagrangian for a charged particle interacting
with EM can be reliable, even well below its own cutoff scale, only for small EM field invariants.

One still needs to see whether the dynamical DoFs propagate in the correct number and
causally. To this end, let us isolate the terms in Eqs. (3.25) that contain second-order derivatives:

R
(2)
µν = D2

ϕµν −
[
Dµ(D ·ϕν −Dνϕ)+(µ ↔ ν)

]
− 1

2 D(µDν)ϕ +ηµν(D ·D ·ϕ−D2
ϕ
′). (3.31)

The last term can be actually dropped in view of (3.28), while the constraint equations (3.27)
and (3.29) can be substituted in the second and third terms to obtain

R
(2)
µν = �ϕµν − 3

2(ie/m2)
[
Fρσ

∂ρ∂(µϕν)σ +Fρ(µ∂ν)(∂ ·ϕρ −∂
ρ

ϕ
′)
]

+3
2

(D−2
D−1

)
(e/m2)2

[
Fρσ F λ

σ ∂µ∂νϕρλ − 1
2 TrF2

∂µ∂νϕ
′
]
. (3.32)

Following [13] one can employ the method of characteristic determinant to investigate the causal
properties of the system. One replaces i∂µ with nµ , the normal to the characteristic hypersurfaces,
in the highest-derivative terms of the EoMs5. The determinant ∆(n) of the resulting coefficient
matrix determines the causal properties of the system: if the algebraic equation ∆(n) = 0 has real
solutions for n0 for any ~n, the system is hyperbolic, with maximum wave speed n0/|~n|. On the

5This procedure is akin to solving the EoMs in the eikonal approximation letting ϕµν = ϕ̂µν exp(itn · x), t→ ∞.
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other hand, if there are time-like solutions nµ for ∆(n) = 0, the system admits faster-than-light
propagation. The coefficient matrix appearing in (3.32) takes the form

M (αβ )
(µν) (n) = −1

2 n2
δ
(α
µ δ

β )
ν + 3

4(ie/m2)
[
nρFρ(αn(µδ

β )
ν) −n(µF (α

ν) nβ )+2n(µF ρ

ν) nρη
αβ

]
− 3

2

(D−2
D−1

)
(e/m2)2 nµnν

[
FαρF β

ρ − 1
2 TrF2

η
αβ

]
. (3.33)

Note that this expression is to be regarded as a matrix whose 1
2 D(D+ 1) rows and columns are

labeled by pairs of Lorentz indices (µν) and (αβ ). In particular, in D = 4 its determinant reads

∆(n) = (n2)8
[
n2−

( e
m2

)2 (F̃ ·n)2
][

n2 +
( 3e

2m2

)2 (
F̃ ·n

)2
]
, (3.34)

where F̃µν ≡ 1
2 εµνρσ Fρσ , so that (F̃ ·n)2 ≡ (n0~B+~n×~E)2− (~n ·~B)2.

Let us now consider 4D EM field invariants such that ~B · ~E = 0, ~B2− ~E2 > 0, which entails
that ~B2 is non-vanishing in all Lorentz frames. One can always find a vector~n, perpendicular to ~B,
for which the characteristic determinant vanishes provided that

n0

|~n|
=

1√
1−
( 3e

2m2

)2~B2
, (3.35)

thanks to the last factor appearing in (3.34). Therefore, superluminal propagation can take place
even for infinitesimally small values of ~B2. Moreover, the propagation itself ceases to occur when-
ever ~B2 ≥

(2
3 m2/e

)2. One can always find a Lorentz frame where the pathology shows up: the

magnetic field ~B2 can reach the critical value in a frame where ~E2 =
(2

3 m2/e
)2− ε , with ε ar-

bitrarily small. This is the most serious aspect of the problem: it persists even for infinitesimally
small values of the EM field invariants−far away from the instabilities [28, 29]−so that one expects
to have well-behaved and long-lived propagating particles. This is the so-called Velo-Zwanziger
problem [13], which as we see arises already at the classical level6.

Note that the pathology is not a special property of the spin-2 case; it generically shows up
for all charged massive HS particles with s ≥ 3/2 since it originates from the very existence of
longitudinal modes for massive HS particles [32]. More importantly, it persists for a wide class
of non-minimal generalizations of the theory [33, 34, 35]. Thus, field theoretically it is quite
challenging to construct consistent interactions of massive HS particles.

4. Remedy for the Velo-Zwanziger Problem

The superluminal propagation of the physical modes of a massive HS field in an external field
is a serious problem. However, addition of non-minimal terms and/or new dynamical DoFs may
come to the rescue. For example, the Lagrangian proposed in Ref. [36] incorporates appropri-
ate non-minimal terms that propagate only within the light cone the physical modes of a massive
spin- 3

2 field in a constant external EM background. A more well-known example is N = 2 (bro-
ken) SUGRA [37, 38]: it contains a massive gravitino that propagates consistently, even when the

6The pathology in the corresponding quantum theory was found much earlier by Johnson and Sudarshan [30] for
massive spin 3

2 . From a canonical point of view, in an EM background, the equal time commutation relations become
ill-defined. That the Johnson-Sudarshan and Velo-Zwanziger problems have a common origin was later shown in [31].
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cosmological constant vanishes, if it has a charge, e = 1√
2
(m/MP), under the graviphoton [39].

Causality is preserved by the presence of both EM and gravity, along with non-minimal terms.
In this Section we will see how String Theory bypasses the Velo-Zwanziger problem. To

this end, one starts with the (exactly solvable) σ -model for bosonic open string in a constant EM
background, originally considered in [40], and perform a careful analysis of the mode expansion
and the Virasoro generators. The physical state conditions for string states can be translated into
the language of string fields to obtain a Fierz-Pauli system, which explicitly shows that indeed the
Velo-Zwanziger problem is absent for the symmetric tensors of the first Regge trajectory [41, 43].

4.1 Open Strings in Constant EM Background

We consider an open bosonic string whose endpoints lie on a space-filling D-brane7. A
Maxwell field Aµ living in the world-volume of the D-brane couples to charges e0 and eπ at the
string endpoints. For an electromagnetic background with constant field strength Fµν , the EoMs
are those of the usual free strings while the boundary conditions are deformed, so that the σ -model
is exactly solvable [40, 41, 42]. With a careful definition of the mode expansion, it is possible to
have commuting center-of-mass coordinates, which obey canonical commutation relations with the
(non-commuting) covariant momenta [41, 43]. Like for free strings, there is an infinite set of cre-
ation and annihilation operators that are well-defined in the physically interesting regimes [41, 43].

An important point is that the mode α
µ

0 is the covariant momentum only up to a rotation:

α
µ

0 =
(√

G/eF
)µ

ν

pν
cov, (4.1)

where e = e0 + eπ is the total charge of the string, and

G =
1
π

[
tanh−1(πe0F)+ tanh−1(πeπF)

]
. (4.2)

With
[
pµ

cov, pν
cov
]
= ieFµν , it is convenient to define a different covariant derivative:

Dµ ≡ iαµ

0 , [Dµ ,Dν ] =−iGµν . (4.3)

The commutation relations obeyed by the Virasoro generators can be worked out as usual. The
end result is the emergence of an additive contribution to L0 [40]:

L0→ L0 +
1
4 TrG2, (4.4)

Up to this shift, the Virasoro algebra remains precisely the same as in the free theory:

[Lm,Ln] = (m−n)Lm+n +
1
12 D(m3−m)δm,−n, (4.5)

The shift (4.4), however, has an important effect since it deforms the masses of the open-string
excitations.

7We set the string tension to α ′ = 1
2 .
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4.2 Physical State Conditions

A generic string state in the presence of a constant EM background is constructed the same way
as in the free theory, since the two cases have identical sets of creation and annihilation operators.
It is given by:

|Ψ〉=
∞

∑
s=1

∞

∑
mi=1

ψ
(m1...ms)
µ1...µs (x)a†µ1

m1
· · ·a†µs

ms
|0〉, (4.6)

where the rank-s coefficient tensor is interpreted as a string field, and as such is a function of the
string center-of-mass coordinates.

Because the Virasoro algebra is the same as in the free theory, a string state |Φ〉 is called
“physical” if it satisfies the conditions [40, 41, 42]:

(L0−1)|Φ〉 = 0, (4.7)

L1|Φ〉 = 0, (4.8)

L2|Φ〉 = 0, (4.9)

where now

L0 = −1
2D2 +

∞

∑
m=1

(m+ iG)µν a†µ
m aν

m + 1
4 TrG2

≡ −1
2D2 +

(
N + 1

4 TrG2)+ i
∞

∑
m=1

Gµν a†µ
m aν

m , (4.10)

L1 = −i
[√

1+ iG
]

µν

Dµaν
1 +

∞

∑
m=2

[√
(m+ iG)(m−1+ iG)

]
µν

a†µ

m−1aν
m , (4.11)

L2 = − i
[√

2+ iG
]

µν

Dµaν
2 + 1

2

[√
1+G2

]
µν

aµ

1 aν
1

+
∞

∑
m=3

[√
(m+ iG)(m−2+ iG)

]
µν

a†µ

m−2aν
m , (4.12)

with Dµ defined in Eq. (4.3). Notice that the number operator N will be defined in such a way
that its eigenvalues N are integers, just as for free strings:

N ≡
∞

∑
n=1

na†
n ·an. (4.13)

We would like to see how the Eqs. (4.7)-(4.9) translate into the string field theory language.

4.2.1 Level N = 1

The generic state at this level is given by

|Φ〉= Aµ(x)a†µ

1 |0〉. (4.14)

While Eq. (4.9) is empty, Eqs. (4.7) and (4.8) give[
D2− 1

2 TrG2
]

Aµ −2iG ν
µ Aν = 0, (4.15)

Dµ
(√

1+ iG ·A
)

µ
= 0, (4.16)
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thanks the commutation relations of the creation and annihilation operators, and the usual definition
of the oscillator vacuum. By the field redefinition,

Aµ ≡
(√

1+ iG ·A
)

µ

, (4.17)

the field equations (4.15)-(4.16) can be cast in the form

[
D2− 1

2 TrG2
]
Aµ −2iG ν

µ Aν = 0, (4.18)

DµAµ = 0. (4.19)

The algebraic consistency of this system can be easily verified. The divergence constraint (4.19)
ensures that the number of dynamical DoFs is not affected.

4.2.2 Level N = 2

A generic state at this mass level is written as

|Φ〉= hµν(x)a†µ

1 a†ν

1 |0〉+
√

2iBµ(x)a†µ

2 |0〉. (4.20)

After the field redefinitions

Hµν ≡
(√

1+ iG ·h ·
√

1− iG
)

µν

, (4.21)

Bµ ≡
(√

1+ i
2 G ·B

)
µ

, (4.22)

the physical state conditions (4.7)-(4.9) leave us with

(
D2−2− 1

2 TrG2
)
Hµν −2i(GH −H G)µν = 0, (4.23)(

D2−2− 1
2 TrG2

)
Bµ −2iG ν

µ Bν = 0, (4.24)

DµHµν − (1+ iG)
ρ

ν Bρ = 0, (4.25)

H µ

µ +2DµBµ = 0. (4.26)

One finds that the system (4.23)-(4.26) enjoys an on-shell gauge invariance with a vector gauge
parameter in D = 26 [43]. Thus, in D = 26, one can gauge away the vector field Bµ to obtain

(
D2−2− 1

2 TrG2
)
Hµν −2i(G ·H −H ·G)µν = 0, (4.27)

D ·Hµ = 0, (4.28)

H ′ = 0. (4.29)

Thus Hµν is a massive spin-2 field, with mass2 = (1/α ′)
(
1+ 1

4 TrG2
)
, that possesses a suitable

non-minimal coupling to the background EM field. It is easy to see that the system (4.27)-(4.29) is
algebraically consistent and preserves the right number of DoFs, namely 1

2(D+1)(D−2).
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4.2.3 Arbitrary mass level: N = s

As one goes higher in the mass level, subleading Regge trajectories show up. It turns out that
the lower Regge trajectories are not consistent in isolation, whereas the leading Regge trajectory
is [43]. At level N = s, the first Regge trajectory contains a symmetric rank-s tensor. The string
field equations that result from the physical state conditions (4.7)-(4.9) are [43]:[

D2−2(s−1)− 1
2 TrG2

]
Φµ1...µs +2iGα

(µ1Φµ2...µs)α = 0, (4.30)

D ·Φµ2...µs = 0, (4.31)

Φ ′µ3...µs
= 0. (4.32)

One can easily show that the Eqs. (4.30)-(4.32) are algebraically consistent. They form a Fierz-
Pauli system for a massive spin-s field, with mass2 = (1/α ′)

(
s−1+ 1

4 TrG2
)
. It is manifest that the

system gives the correct count of DoFs. Following [41, 43], we will now show that these equations
indeed propagate the physical DoFs within the light cone.

4.3 Proof of Causal Propagation

We employ the method of characteristic determinants, already discussed in Section 3.2. Let
us note from Eqs. (4.30)-(4.32) that the highest-derivative terms appearing in the EoMs boil down
to the scalar operator D2 acting on the field. From the definition (4.3) of Dµ , it is clear that the
vanishing of the characteristic determinant boils down to the condition:

(G/eF)µ

ν
nµ nν = 0. (4.33)

One can go to a Lorentz frame in which F is block skew-diagonal: Fµ

ν = diag(F1 ,F2 ,F3 , ... ...),
with the blocks given by

F1 = a

(
0 1
1 0

)
, Fi 6=1 = bi

(
0 1
−1 0

)
, (4.34)

where a and bi’s are real-valued functions of the EM field invariants whose values are always small
in physically interesting cases. In the same Lorentz frame, clearly G will be block skew-diagonal
as well: Gµ

ν = diag(G1 ,G2 ,G3 , ... ...), with

G1 = f (a)

(
0 1
1 0

)
, Gi6=1 = g(bi)

(
0 1
−1 0

)
, (4.35)

where the functions f and g are given as

f (a) ≡ 1
π
[ tanh−1(πe0a)+ tanh−1(πeπa) ], (4.36)

g(bi) ≡
1
π
[ tan−1(πe0bi)+ tan−1(πeπbi) ]. (4.37)

We emphasize that if the EM field invariants are small, these functions are always well-defined
and their absolute values are much smaller than unity. Given the forms (4.34) and (4.35), one finds
that (G/eF) is in fact a diagonal matrix:(

G
eF

)µ

ν

= diag
[

f (a)
ea

,
f (a)
ea

,
g(b2)

eb2
,
g(b2)

eb2
,
g(b3)

eb3
,
g(b3)

eb3
, ... ...

]
. (4.38)
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The functions (4.36) and (4.37), however, satisfy the inequalities

f (a)
ea
≥ 1, 0 <

g(bi)

ebi
≤ 1. (4.39)

Then, in view of (4.38), any solution nµ of Eq. (4.33) must be space-like:

n2 ≥ 0, (4.40)

which is a Lorentz invariant statement. We therefore conclude that the propagation of the field is
causal in all Lorentz frames.

We finish this Section with a few remarks. We have seen that String Theory gives a consistent
set of EoMs and constraints (4.30)-(4.32) so that any field belonging to the first Regge trajectory
propagates causally in a constant EM background. It is also guaranteed that this system comes from
a Lagrangian [43]. In fact, explicit Lagrangians have been worked out for s = 2 [41] and s = 3 [44].
They, however, give rise to the Fierz-Pauli conditions (4.30)-(4.32) only in the critical dimension
D = 26 [43]. To obtain a consistent theory in D < 26, one may perform a consistent dimensional
reduction of the string-theory Lagrangian by keeping only the singlets of the internal coordinates.
In this way, one may start with the spin-2 Lagrangian [41] and ends up having a consistent model,
say in 4D, that contains spin-2 plus a spin-0 field both having the same mass and charge [45].

Note that the generalized Fierz-Pauli conditions (4.30)-(4.32) contain non-standard kinetic
contributions. One may wonder whether the flat-space no-ghost theorem extends to this case. One
can show that indeed the no-ghost theorem continues to hold in the regime of physical interest [43].

Last but not the least, let us notice that Open String Theory requires a universal value of g = 2
for the gyromagnetic ratio for all spin [46]. This value can simply be read from the non-minimal
term appearing in Eq. (4.30). At the Lagrangian level, this can be seen by removing the kinetic-like
cubic interactions by suitable field redefinitions, which uniquely give g = 2 [43].

5. Intrinsic Cutoff for Interacting Massive Higher Spins

Can an interacting massive HS particle be described by a local Lagrangian up to arbitrarily
high energy scales? The answer is no, because the no-go theorems [1, 2, 3, 4, 5] on EM and
gravitationally coupled massless particles imply that the cutoff of that Lagrangian must vanish in
the massless limit. One would like to find the explicit dependence of the cutoff on the mass and the
coupling constant of the theory to see if the cutoff can be parametrically larger than the mass.

The existence of a finite cutoff and the origin of the acausality problem are both due to a
simple fact: the free kinetic term of a HS field exhibits gauge invariance, i.e., it has zero modes.
In the presence of interactions, some of these modes may acquire non-canonical kinetic term and
propagate acausally. On the other hand, in the massless limit the HS propagator is singular, so that
scattering amplitudes diverge. All this is not manifest at all in the unitary gauge. The best way to
understand these issues is the Stückelberg formalism, which focuses precisely on the gauge modes.
To understand this formalism, let us consider again the Fierz-Pauli Lagrangian (3.15) for a massive
spin-2 field8. Note that gauge invariance can be restored in the massive theory by introducing the

8For this field, the Stuc̈kelberg formalism has been employed, for example, in [32, 47, 48].
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Stuc̈kelberg fields Bµ and φ , through the field redefinition:

ϕµν → ϕ̃µν = ϕµν +
1
m

∂µ

(
Bν −

1
2m

∂νφ

)
+

1
m

∂ν

(
Bµ −

1
2m

∂µφ

)
, (5.1)

so that the following transformations become a gauge symmetry:

δϕµν = ∂(µλν), (5.2)

δBµ = ∂µλ −mλµ , (5.3)

δφ = 2mλ . (5.4)

Note that this Stückelberg symmetry is a fake one in that one can always gauge away the Stück-
elberg fields to go back to the unitary-gauge Fierz-Pauli Lagrangian (3.15). However, these fields
may help us to understand some otherwise obscure phenomena. For example, one slick way of
understanding the mass term, m2

(
ϕµνϕµν −ϕ ′2

)
, in (3.15) is that this is the unique linear combi-

nation of ϕµνϕµν and ϕ ′2 for which 4-derivative bad kinetic terms of the field φ are killed.
One can instead choose a gauge fixing such that all the fields acquire canonical kinetic terms.

In the interacting theory, one thus ends up having non-renormalizable interactions9 involving the
Stückelberg fields, weighted by coupling constants with negative mass dimensions [32, 47, 49]:

L = Lrenormalizable + ∑
n>0

(Λn)
−nOn+4, (5.5)

where On+4 denotes operators of dimension n+ 4. Some of these operators may be eliminated
by field redefinitions or by adding non-minimal terms to the Lagrangian. The smallest Λn in the
remaining terms defines the ultimate cutoff of the effective field theory. Let us now consider some
examples: massive particles coupled to EM in flat space.

Spin 1

We start with a complex massive spin-1 field, Wµ , minimally coupled to EM:

L =−1
2 |DµWν −DνWµ |2−m2W ∗µW µ − 1

4 F2
µν , (5.6)

Contrary to naïve power counting, we know that this Lagrangian is non-renormalizable. To make
the higher dimensional operators appear, we introduce a scalar φ through the substitution

Wµ =Vµ −
1
m

Dµφ . (5.7)

so that one has the gauged Stückelberg symmetry:

δVµ = Dµλ , (5.8)

δφ = mλ . (5.9)

With the addition of the gauge-fixing term

Lgf =−|D ·V −mφ |2, (5.10)

9In this Section, we will work only in D = 4.
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one is left with the following operators:

L +Lgf = V ∗µ
(
D2−m2)V µ +φ

∗ (D2−m2)
φ − 1

4 F2
µν

−
[

ie
2m

Fµν
φ
∗(DµVν −DνVµ)+ c.c.

]
− e2

2m2 F2
µνφ

∗
φ . (5.11)

The presence of non-renormalizable interactions implies the existence of a UV cutoff Λ∼ m/e. In
a local theory addition of non-minimal terms and field redefinitions cannot remove these operators
without introducing new ones that instead lower the cutoff, parametrically in e� 1 [32, 49].

Thus the cutoff of a charged massive spin-1 particle is Λ∼ m/e in the absence of other DoFs.
This means in particular that the electrodynamics of W± boson has a cutoff Λ ∼ 270GeV. Below
this scale some new physics must appear. This could be strong coupling or new dynamical DoFs.
We now know that the latter possibility is realized in nature. The new DoF−the neutral Higgs
scalar−has a mass of 126GeV, which is indeed below the cutoff scale Λ.

Spin 2

We take the Pauli-Fierz Lagrangian (3.15), introduce the Stückelberg fields through (5.1),
make the fields complex, and then replace ordinary derivatives with covariant ones. Thus result is

L =−|Dµ ϕ̃νρ |2 +2|Dµ ϕ̃
µν |2 + |Dµ ϕ̃

′|2− [Dµ ϕ̃
∗µνDν ϕ̃

′+ c.c.]−m2[ϕ̃∗µν ϕ̃
µν − ϕ̃

′∗
ϕ̃
′], (5.12)

with

ϕ̃µν = ϕµν +
1
m

Dµ

(
Bν −

1
2m

Dνφ

)
+

1
m

Dν

(
Bµ −

1
2m

Dµφ

)
. (5.13)

This system enjoys the covariant Stückelberg symmetry:

δϕµν = D(µλν), (5.14)

δBµ = Dµλ −mλµ , (5.15)

δφ = 2mλ . (5.16)

Now we diagonalize the kinetic operators and thereby make sure that the propagators are
smooth in the massless limit. This is done by the field redefinition:

ϕµν → ϕµν − 1
2 ηµνφ , (5.17)

along with the addition of the gauge-fixing terms (thereby exhausting all gauge freedom):

Lgf1 = −2
∣∣D ·ϕµ − (1/2)Dµ

ϕ
′+mBµ

∣∣2 , (5.18)

Lgf2 = −2 |D ·B+(m/2)(ϕ ′−3φ)|2. (5.19)

One is thus left with

L = ϕ
∗
µν

(
�−m2)

ϕ
µν − 1

2 ϕ
′∗ (�−m2)

ϕ
′+2B∗µ(�−m2)Bµ + 3

2 φ
∗(�−m2)φ − 1

4 F2
µν +Lint.

(5.20)
Here Lint contains all interaction operators; they appear with canonical dimension ranging from 4
through 8, and at least one power of e. Parametrically in e� 1, for any given operator dimension-
ality, the O(e)-terms are more dangerous than the others because they are weighted by the inverse
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of a lower mass scale. On the other hand, at a given order in e, the higher the dimension, the more
dangerous an operator is. The most dangerous operators are therefore the O(e) dimension-8 ones:

L8 =
e

m4 ∂µFµν [(i/2)∂ρφ
∗
∂

ρ
∂νφ + c.c.]≡ e

m4 ∂µFµνJν . (5.21)

While the field redefinition: Aµ → Aµ − (e/m4)Jµ removes this operator, it also yields another
equally bad term, namely, (e/2m4)2(∂µJν − ∂νJµ)

2. To improve the degree of divergence, one
may add some local functions of ϕ̃µν that can cancel the O(e2) term. Indeed the term Ladd =

(e2/4)(ϕ̃∗µρ ϕ̃
ρ

ν − ϕ̃∗νρ ϕ̃
ρ

µ)
2 achieves this feat. Thus the possible cutoff is pushed higher: the most

dangerous operators now are weighted by e2/m7. These dimension-11 operators could be elimi-
nated, up to total derivatives, by adding local counter-terms. However, in a local theory there is
a cohomological obstruction to this possibility [49]. Attempts along these lines would therefore
suggest a cutoff scale O(m/e2/7), which cannot be improved further.

However, mere addition of a dipole term in the Lagrangian may leave us only with O(e/m3)-
terms, as we will now see. This is an improvement over field redefinition plus addition of local
(counter-)terms. Indeed, the dipole term

Ldipole = ieFµν
ϕ̃
∗
µρ ϕ̃

ρ

ν , (5.22)

when added to the minimal Lagrangian (5.12), completely eliminates the dimension-8 opera-
tors (5.21). In the resulting non-minimal theory, one does have O(e) dimension-7 operators:

L7 +L7,dipole =
ie

2m3 Fµν

(
2∂[µB∗

ρ]∂
ρ

∂νφ −∂[µB∗
ν ]�φ

)
+ c.c., (5.23)

which contain pieces not proportional to any of the EoMs. Therefore, the degree of divergence
cannot be improved any further. In the scaling limit m→ 0 and e→ 0, such that e/m3 = constant,
the non-minimal Lagrangian reduces to:

L = Lkin +
i

2Λ3 Fµν

(
2∂[µB∗

ρ]∂
ρ

∂νφ −∂[µB∗
ν ]�φ

)
+ c.c., (5.24)

which has an intrinsic cutoff [32, 49]:
Λ =

m
e1/3 . (5.25)

Arbitrary Spin

One can follow the same steps for arbitrary spin to find that the largest cutoff of the local
effective theory describing a massive charged particle of s≥ 1, coupled to EM is [49]:

Λ = me−1/(2s−1) . (5.26)

This formula, valid in the limit e� 1, states that massive HS particles admit a local description
even for energies above their mass, when they must be treated as true dynamical DoFs in the
effective action. This is a model-independent upper bound on the cutoff that no theory can beat:
requiring further consistencies, e.g. causal propagation, may only result in a lower cutoff [41, 43,
49]. Conversely, other consistency requirements may even sharpen this bound.
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The meaning of the cutoff upper bound (5.26), as we have already mentioned, is only that
some new physics must happen below this scale. This new physics could result in a strong cou-
pling unitarization, or in the existence of new interacting DoFs lighter than the cutoff. In the first
case, the theory becomes essentially non-local at a scale not higher than Λ as the spin-s particle
develops a form factor which is tantamount to a finite non-zero charge radius. In the second case,
if one integrates out the new light DoFs, the resulting action would necessarily contain non-local
terms already below the scale Λ. The very possibility non-local counter-terms invalidates the coho-
mological argument of Ref. [49]. Because of this technical reason, lighter DoFs may be essential
for a complete UV embedding of the effective field theory.

6. Interactions of Higher Spin Gauge Fields

The no-go theorems for interacting HS fields, presented in Section 3.1, do not apply to massive
particles. The reason is trivial: gauge transformations are no longer a symmetry because of the mass
term. However, we saw that these fields have other problems when interactions are present. Some
details of (consistent) interactions of massive HS fields have been presented in Sections 4 and 5.

The Aragone-Deser obstruction [3] to consistent local interactions of massless HS fields is due
the appearance of the Weyl tensor in the gauge variation. In D= 3, the Weyl tensor is vanishing, and
so no such obstructions exist. Because HS gauge fields in 3D carry no local DoFs (see Eqs. (2.32)
and (2.40)), they are immune from many consistency issues that may arise in higher dimensions.
In fact, 3D HS gauge theory is a very rich and rapidly expanding subject. An entire set of lecture
notes by G. Lucena Gómez on this topic−complementary to this set−is also going to appear.

It is possible to have consistent HS gauge theories in AdS space, e.g., Vasiliev’s HS gauge
theories [8, 10]10. Vasiliev’s system is a set of classical non-linear gauge-invariant equations for an
infinite tower of HS gauge fields in AdS space. When expressed in terms of metric-like symmetric
tensor fields, the linearized equations take the standard Fronsdal form (2.29). These theories con-
tain interaction terms that do not stop at a finite number of derivatives, so that they are essentially
non-local. But the non-locality is under control in that higher-derivative terms are weighted by
inverse powers of the cosmological constant Λ, which is at our disposal. However, this also means
that these theories do not allow sensible flat limits. On the other hand, the cosmological constant
defines a mass parameter O(

√
|Λ|): one expects no operational difference between massless parti-

cles and massive particles with Compton wavelength larger than the AdS radius. Another way of
seeing how Vasiliev’s theories avoid the no-go theorems is that in AdS space S-matrix is not well-
defined since asymptotic states do not exist. The formulation of these theories is rather technical;
interested readers may find Refs. [53, 54, 55] useful for a comprehensive overview.

Finally, in flat space another way to bypass the no-go theorems is to have higher-derivative
non-minimal couplings for HS gauge fields [5]. In fact, gravitational and EM multipole interactions
show up, for example, as the 2− s− s and 1− s− s trilinear vertices constructed in [56] for bosonic
fields. These cubic vertices are special cases of the general form s1 − s2 − s3, which involves
massless fields of arbitrary spins. The light-cone formulation puts restrictions on the number of
derivatives in these vertices, and thereby provides a way of classifying them [57]. For bosonic

10See also Refs. [50, 51, 52] for discussions of HS interactions in AdS space.
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fields, there is one vertex for each value of the number of derivatives p, in the range

s1 + s2− s3 ≤ p≤ s1 + s2 + s3, (6.1)

where s3 is the smallest of the three spins. For a vertex containing two fermions and a boson, the
formula is the same modulo that one uses s− 1

2 as “spin” for fermions. For bosonic fields, the
complete list of such vertices was given in [58]. The authors in [59] have employed the Noether
procedure to explicitly construct off-shell vertices. On the other hand, the tensionless limit of
String Theory gives rise to the same set of cubic vertices [60]. In Ref. [60] generating functions
for off-shell trilinear vertices for both bosonic and fermionic fields have been presented. One can
also employ the powerful machinery of the BRST-antifield method [61] to systematically construct
consistent interactions using the language of cohomology. With the underlying assumptions of lo-
cality and Poincaré invariance, this approach is very useful in general for obtaining gauge-invariant
and manifestly Lorentz-invariant off-shell vertices for HS gauge fields11. In Section 6.1, we will
employ this method to construct a cubic coupling for a very simple non-trivial system, while in
Section 6.2, we explore the second-order consistency of this vertex.

6.1 Consistent Couplings via BRST-Antifield Method

The BRST-antifield method [61] uses gauge invariance as a consistency condition and by con-
struction throws away trivial interactions. Here we will employ this method to construct a parity-
preserving off-shell non-abelian 1− 3

2 −
3
2 vertex, closely following Ref. [65]. The spin- 3

2 system
is simple enough to allow an easy implementation of the BRST deformation scheme while cap-
turing many non-trivial features that could serve as guidelines for HS particles. Let us recall from
Section 3.1 that no-go theorems rule out minimal EM coupling in flat space for s = 3

2 and higher.
To construct possible non-minimal couplings, we will go step by step for the sake of a clear under-
standing of the procedure.

Step 0: Free Action

The starting point is the free theory, which contains a photon Aµ and a massless spin- 3
2 field

ψµ , described by the action

S(0)[Aµ ,ψµ ] =
∫

dDx
[
−1

4 F2
µν − iψ̄µγ

µνρ
∂νψρ

]
, (6.2)

which enjoys two abelian gauge invariances: one with a bosonic gauge parameter λ , another with
a fermionic gauge parameter ε:

δλ Aµ = ∂µλ , δεψµ = ∂µε. (6.3)

Step 1: Ghosts

For the Grassmann-even gauge parameter λ , we introduce a Grassmann-odd bosonic ghost C.
Corresponding to the Grassmann-odd ε , we have a Grassmann-even fermionic ghost ξ . The set of
fields now becomes

Φ
A = {Aµ ,C,ψµ ,ξ}. (6.4)

11See also Ref. [62] for general methodology and also [56, 63, 64, 65] for some applications.
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In the algebra generated by the fields, we introduce a grading−the pure ghost number (pgh)−which
is non-zero only for the ghost fields {C,ξ}.

Step 2: Antifields

For each field, we introduce an antifield with the same algebraic symmetries in its indices but
opposite Grassmann parity. The set of antifields is

Φ
∗
A = {A∗µ ,C∗, ψ̄∗µ , ξ̄ ∗}. (6.5)

In the algebra generated by the fields and antifields, we introduce another grading−the antighost
number (agh)−which is non-zero only for the antifields Φ∗A. Explicitly,

agh(Φ∗A) = pgh(ΦA)+1, agh(ΦA) = 0 = pgh(Φ∗A). (6.6)

The ghost number (gh) is another grading, defined as gh = pgh−agh.

Step 3: Antibracket

On the space of fields and antifields we define an odd symplectic structure, called the an-
tibracket, as

(X ,Y )≡ δ RX
δΦA

δ LY
δΦ∗A

− δ RX
δΦ∗A

δ LY
δΦA , (6.7)

which satisfies the graded Jacobi identity. This definition gives
(
ΦA,Φ∗B

)
= δ A

B , which is real.
Because a field and its antifield have opposite Grassmann parity, it follows that if ΦA is real, Φ∗B
must be purely imaginary, and vice versa.

Step 4: Free Master Action

Now we construct the free master action S0−an extension of the original gauge-invariant ac-
tion (6.2)−by terms involving ghosts and antifields. Explicitly,

S0 =
∫

dDx
[
−1

4 F2
µν − iψ̄µγ

µνρ
∂νψρ +A∗µ∂µC− (ψ̄∗µ∂µξ −∂µ ξ̄ ψ

∗µ)
]
. (6.8)

Note that the antifields appear as sources for the “gauge” variations, with gauge parameters replaced
by corresponding ghosts. It is easy to see that (6.8) solves the master equation (S0,S0) = 0.

Step 5: BRST Differential

The master action S0 is the generator of the BRST differential s for the free theory−defined as

sX ≡ (S0,X). (6.9)

Note that S0 is BRST-closed, as a simple consequence of the master equation. From the properties
of the antibracket, we also find that s is nilpotent:

s2 = 0. (6.10)

Then, the master action S0 belongs to the cohomology of s in the space of local functionals of the
fields, antifields, and their finite number of derivatives.
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The various gradings are important as s decomposes into the sum of the Koszul-Tate differen-
tial, ∆, and the longitudinal derivative along the gauge orbits, Γ:

s = ∆+Γ. (6.11)

∆ implements the EoMs by acting only on the antifields, and in so doing it decreases the antighost
number by one unit while keeping unchanged the pure ghost number. On the other hand, Γ acts
only on the original fields and produces the gauge transformations. It increases the pure ghost
number by one unit without changing the antighost number. Thus all three ∆, Γ and s increase the
ghost number by one unit, gh(∆) = gh(Γ) = gh(s) = 1. It is important to note that ∆ and Γ are
nilpotent and anticommuting:

Γ
2 = ∆

2 = 0, Γ∆+∆Γ = 0. (6.12)

The different gradings and Grassmann parity of the various fields and antifields, along with
the action of Γ and ∆ on them, are given in the following Table.

Table 1: Properties of the Various Fields & Antifields

Z Γ(Z) ∆(Z) pgh(Z) agh(Z) gh(Z) ε(Z)

Aµ ∂µC 0 0 0 0 0
C 0 0 1 0 1 1

A∗µ 0 −∂νFµν 0 1 −1 1
C∗ 0 −∂µA∗µ 0 2 −2 0
ψµ ∂µξ 0 0 0 0 1
ξ 0 0 1 0 1 0

ψ̄∗µ 0 −i∂α ψ̄β γαβ µ 0 1 −1 0
ξ̄ ∗ 0 ∂µ ψ̄∗µ 0 2 −2 1

An Aside: BRST Deformation Scheme

The solution of the master equation contains compactly all information pertaining to the con-
sistency of the gauge transformations. One can reformulate the problem of introducing consistent
interactions in a gauge theory as that of deforming the master action. If S is the solution of the
deformed master equation, then (S,S) = 0. This must be a deformation of the solution S0 of the
master equation of the free gauge theory, in the deformation parameter g:

S = S0 +gS1 +g2S2 +O(g3). (6.13)

The master equation for S splits, up to O(g2), into the following set

(S0,S0) = 0, (6.14)

(S0,S1) = 0, (6.15)

(S1,S1) =−2(S0,S2). (6.16)
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Eq. (6.14) is fulfilled by assumption, and Eq. (6.15) means S1 is BRST-closed:

sS1 = 0. (6.17)

If the first-order local deformations are given by S1 =
∫

a, where a is a top-form of ghost number
0, then the following cocycle condition follows

sa+db = 0, (6.18)

which says that non-trivial deformations belong to H0(s|d)−the cohomology of the zeroth-order
BRST differential s, modulo total derivative d, at ghost number 0. Now, one can make an antighost-
number expansion of the local form a; this expansion stops at agh = 2 [56, 62, 63]:

a = a0 +a1 +a2, agh(ai) = i = pgh(ai). (6.19)

The significance of the various terms is as follows. a0 is the deformation of the Lagrangian, while
a1 and a2 encode information about the deformations of the gauge transformations and the gauge
algebra respectively [61]. Thus, if a2 is non-trivial, the algebra of the gauge transformations is
deformed and becomes non-abelian. In what follows we are interested only in gauge-algebra-
deforming/non-abelian vertices. Given the expansion (6.19) and the decomposition (6.11), the
cocycle condition (6.18) gives the following consistency cascade for allowed deformations:

Γa2 = 0, (6.20)

∆a2 +Γa1 +db1 = 0, (6.21)

∆a1 +Γa0 +db0 = 0, (6.22)

where agh(bi) = i, pgh(bi) = i+ 1, and a2 has been chosen to be Γ-closed, instead of Γ-closed
modulo d (this is always possible [62]).

Step 6: Cohomology of Γ

The cohomology of Γ contains gauge-invariant functions of the fields and antifields. For the
spin- 3

2 field, it is isomorphic to the space of functions of

• The undifferentiated ghosts {C,ξ},

• The antifields {A∗µ ,C∗, ψ̄∗µ , ξ̄ ∗} and their derivatives,

• The curvatures {Fµν ,∂[µψν ]} and their derivatives.

Step 7: Solution of the Consistency Cascade

Requiring that a2 be a parity-even Lorentz scalar, the most general possibility for it is

a2 =−g0C
(
ξ̄
∗
ξ + ξ̄ ξ

∗)−g1C∗ξ̄ ξ , (6.23)

The first piece with coefficient g0 potentially gives rise to minimal coupling, while the second
could produce dipole interaction. This can be understood by a derivative counting down the cas-
cade (6.20)-(6.22) with the knowledge of the action of Γ and ∆ on the fields and antifields. It is
then easy to see that the respective a0’s would contain no derivative and one derivative respectively.
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It turns out that each of the terms in a2 can be consistently lifted to an a1 by solving Eq. (6.21):

a1 = g0
[
ψ̄
∗µ(ψµC+ξ Aµ)+h.c.

]
+g1A∗µ(ψ̄µξ − ξ̄ ψµ)+ ã1, Γã1 = 0, (6.24)

where the ambiguity, ã1, belongs to the cohomology of Γ. Now ∆a1 is by construction Γ-closed
modulo d, but condition (6.22) requires it to be Γ-exact modulo d. This can happen only when
in ∆a1 the potential Γ-non-trivial pieces coming from the unambiguous piece and the ambiguity
cancel each other. It is easy to see that such a cancelation is impossible for the first term in a1

simply because ã1 contains too many derivatives. This rules out minimal coupling of a massless
spin- 3

2 to EM, in accordance with what is known [5, 57].
With g0 = 0, one indeed can satisfy Eq. (6.22) with the choice

ã1 = ig1

[
ψ̄
∗µ

γ
νFµν − 1

2(D−2)
¯6ψ∗ 6F

]
ξ +h.c., (6.25)

which is of course in the cohomology of Γ. Thus we have a consistent Lagrangian deformation

a0 = g1ψ̄µF+µν
ψν = g1ψ̄µ

(
Fµν + 1

2 γ
µνρσ Fρσ

)
ψν , (6.26)

which is the desired non-abelian vertex.

6.2 Second Order Consistency

We recall that consistent second-order deformation requires that (S1,S1) be s-exact:

(S1,S1) =−2sS2 =−2∆S2−2ΓS2. (6.27)

We can prove by contradiction that there is obstruction for our cubic non-abelian vertex to the
quartic order. If Eq. (6.27) holds, then one can show that the Γ-variation of the most general form
of this antibracket evaluated at zero antifields is ∆-exact [65]:

Γ [(S1,S1)]Φ∗A=0 = Γ∆M =−∆(ΓM) . (6.28)

It is relatively easier to compute the left hand side of (6.28) for our non-abelian vertex. Explicit
computation gives

[(S1,S1)]Φ∗A=0 =
∫

dDx
{

4(ψ̄µξ − ξ̄ ψµ)∂ν

(
ψ̄

[µ
ψ

ν ]+ 1
2 ψ̄αγ

µναβ
ψβ

)}
+
∫

dDx
{

iψ̄µF+µν
[
2γ

ρFνρ − 1
D−2 γν 6F

]
ξ +h.c.

}
. (6.29)

If the vertex is unobstructed so that Eq. (6.28) holds, then the Γ-variation of each of these terms
should separately be ∆-exact. By considering, for example, the fermion bilinears appearing in the
second line of Eq. (6.29) it is easy to see that their Γ-variation is not ∆-exact. The conclusion is
that the non-abelian 1− 3

2 −
3
2 vertex gets obstructed beyond the cubic order.

Notice that the vertex ψ̄µF+µνψν is just the Pauli term appearing in N = 2 SUGRA [37].
This theory, however, contains additional DoFs−a graviton−beside a complex massless spin 3

2 and
a U(1) field. It is this new dynamical field that removes obstructions to the vertex while keeping
locality intact. One may decouple gravity by taking MP→∞; then the Pauli term vanishes because
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the dimensionful coupling constant goes like 1/MP [37]. On the other hand, one could integrate
out the massless graviton to obtain a system of spin- 3

2 and spin-1 fields only. The resulting theory
does contain the Pauli term, but it is necessarily non-local. Thus, higher-order consistency of the
non-abelian vertex requires that one either forgo locality or add a new dynamical field (graviton).
For higher spin values, higher-order consistency may call for an infinite tower of HS gauge fields
as well as non-locality just like in Vasiliev’s theory [8, 10] or the tensionless limit of String Theory.
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