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The EUROnu neutrino oscillation super beam
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In the framework of the EUROnu design study, a new design for the CERN to Fréjus neutrino
beam based on CERN Superconducting Proton Linac has been achieved. This super beam is able
to discover a CP violation in the leptonic sector over a significant fraction of δCP parameter by
using a 4-MW proton beam of 4.5 GeV, a base-line of 130 km and the future Water Cherenkov
MEMPHYS detector (0.50 Mton fiducial mass). The neutrino mass hierarchy could also be dis-
coverd by combining atmospheric neutrino data. After discovering that the last neutrino oscil-
lation angle θ13 was large, it came out that working on the second oscillation maximum is even
more promising. Thus, using the same parameters than for CERN to Fréjus, CERN to Canfranc
with a base-line of 650 km has even more physics potentialities. The technological challenges and
the design of the target and horn as well as the safety issues due to the high irradiation produced
inside the super beam apparatus are also discussed.
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Figure 1: Significance of discovery as func-
tion of the fraction of the full δCP space for
SPL1, SPL2, SPL1+βB and low energy neu-
trino factory LENF.
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Figure 2: Power density distribution through-out
the secondary beam line. A large portion of the
4 MW power is dissipated in the four horns/targets
station, shielding and beam dump.

1. Precision measurements with the next generation of neutrino super beam

1.1 Super beam layout

In the framework of EUROnu project [1] a new generation neutrino super beam has been
studied [2] and is based on a relatively short base-line of 130 km from CERN to Fréjus underground
laboratory in France where the megaton scale water Cherenkov detector MEMPHYS [3] could be
installed. The neutrino source is expected to benefit from the Superconducting Proton Linac [4]
at CERN that could produce a high intensity proton beam with 4 MW power at 50 Hz. This is a
novelty since contemporary neutrino projects as T2K and NOvA are not expected to exceed 750 kW
of power [5, 6] and also a technical challenge due to the extreme irradiation produced.

The proton beam line-up after the SPL linac includes an accumulator ring to reduce the proton
pulse length in order to minimize the duration of the current pulses on the horn. The 4 MW proton
beam is distributed via four beam-lines onto a system of four horns/targets in order to minimize
power dissipation and radiation problems. The beam is splitted by kicker magnets, then is bended
by dipoles and finally is focused onto each target by a system of three quadrupoles [2].

The structure of the secondary beam facility is very compact based on the multi-mega watt
four horns/targets station to produce/focus the charged mesons, a short decay tunnel (25 m) to
produce the neutrino beam from the decaying focused particles, and a beam dump to stop the un-
decayed hadrons. Thick iron and/or concrete shielding is foreseen to confine the irradiation inside
the apparatus. Special "radiation hot" cells are also included in the design allowing the replacement
and manipulation of the high radioactive material with special equipment [2].

1.2 Discovery potential

The combined experiment of the super beam with MEMPHYS detector has a very good dis-
covery potential of CP violation. The fraction of δCP space that can be discovered in the Fréjus
base-line (SPL1) is 62% and 37% at a significance level of 3 σ and 5 σ respectively. Better results
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could be achieved for the Canfranc base-line (SPL2) of 650 km whereas 80% and 60% at a sig-
nificance level of 3 σ and 5 σ are covered respectively. For the Fréjus base-line the same level of
performance could be reached only with the combined netrinos from a beta-beam [1] (SPL1+βB)
as shown in figure 1. The neutrino mass hierarchy discovery significance level is lower than 3 σ and
more than 5 σ for the SPL1 and SPL2 respectively [1]. In the case of SPL1, discovery is expected
when data from the atmospheric neutrinos are combined as a benefit of a very large sin22θ13.

2. Technological challenges

Compared to the existing neutrino beams, the four horns/targets system has to be designed to
work with a 4 MW proton beam power and produce neutrinos at a 50 Hz rate. Many constraints
appear due to the high particle rates and cycles that could limit the lifetime of the system. In the
following subsections the target and horn designs are discussed as studied in the EUROnu project.

2.1 Multi mega watt target technology

A titanium alloy canister containing packed bed of titanium or beryllium spheres has been
studied and found the best possible target candidate for the SPL neutrino beam [2]. This target
has large surface area for heat transfer, coolant ability to access transversely areas with highest en-
ergy deposition, presents minimal stresses and offers potential heat removal rates at the hundreds
kilowatt level. The canister is perforated with elliptical holes along its length used for cooling.
Highly pressurized helium gas at 10 bar has been studied as coolant since it is almost beam neutral,
presents low activation and no generation of stress wave, and do not create any corrosion prob-
lems. A 0.25 thick beryllium window with circumferential water cooling is foreseen as an interface
between the proton beam and target station areas.

2.2 Horn Studies

A forward closed horn was studied [2] to be the best compromise between physics potentiali-
ties and reliability. The horn is made of aluminum 6061 T6 alloy because it presents a good trade
off between mechanical strength, resistance to corrosion and electrical conductivity. Each horn has
been studied under 1.3 MW proton beam power in case of one of the four horns fails to work. The
thermodynamical studies were performed with a finite element model that allows the calculation
of the horn stress and deformation due to the magnetic pressure and thermal dilatation. As result a
low relatively stress under 30 MPa is achieved when the horn has a uniform temperature of 60 ◦C.
To maintain a constant working temperature in the conductors of the horn, water jets have been
proposed for cooling. Preliminary fatigue studies indicate that each horn can withstand a year (108

pulses) of operation.
In the power supply design [7], a one-half sinusoid current waveform with a 350 kA maximum

current and pulse length of 100 µs at 50 Hz frequency is generated and distributed to four-horns.
A bench of capacitors is charge and then discharged to each horn via a set of strip-lines. A cur-
rent recovery stage allows a high energy recovery efficiency of 97% and thus it limits the power
consumption. For feasibility reasons, a modular architecture has been adopted with 8 modules
connected in parallel to deliver 44 kA peak currents into the four-horn system.

3



P
o
S
(
N
e
u
t
e
l
 
2
0
1
3
)
0
8
2

The EUROnu neutrino super beam N. Vassilopoulos

2.3 Safety and activation studies

The SPL super beam design has to take into account the significant amount of the produced
radiation and material activation. The shielding should reduce the dose equivalent rate for workers
to a minimal level. In order to reach these dosimetry objectives the ALARA (As Low As Reason-
ably Achievable) approach has already been used in the safety design. It consists of an iterative
process between three phases: a) preparation, design of the facility, dose equivalent rate map and
intervention procedures for workers b) execution, engineering phase check/improve the dosime-
try objectives and c) feedback on safety from others experiments. In each of the three phases,
the individual/collective intervention scenario for workers will be elaborated/modified to reduce
external exposition to radiation to the minimum level. Several configurations of iron thicknesses
surrounded by concrete have been investigated to reduce the dose equivalent rate to an acceptable
level around the target station and minimize rock activation during beam operation [2]. The power
density distribution along the secondary beam-line is shown in figure 2.

3. Conclusions

The SPL neutrino super beam has a great physics potentiality to discover the CP violation in
the neutrino sector as well as the neutrino mass hierarchy. Studies performed during the EUROnu
project show that the target and horn could be able to operate under extreme irradiation conditions.
Future R&D programs are needed to build and test the horn/target designs, the cooling methods of
the beam elements and the power supply unit.
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