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Colourful antenna subtraction for gluon scattering
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In this talk I discuss the application and generalization of the antenna subtraction method to pro-
cesses involving incoherent interferences of partial amplitudes, which are generically present for
the sub-leading colour contributions to processes involving more than five partons. The approach
makes use of the known infrared (IR) singularity structure of one- and two-loop matrix elements
to guide the construction of the subtraction terms. A set of integrated dipoles are defined which
can be used to express the poles of one- and two-loop matrix elements in terms of integrated
antennae. The unintegrated counterparts of these subtraction terms are then inferred to construct
the double real and real-virtual subtraction terms. The method has been tested by computing the
NNLO sub-leading colour contribution dijet production via gluon scattering. The double real and
real virtual matrix elements for this process can be written purely in terms of incoherent interfer-
ences and so the successful removal of all singularities and divergences demonstrates the ability
of the antenna subtraction method to handle general sub-leading colour contributions.
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Colourful antenna subtraction for gluon scattering

1. Introduction

With the successful operation of the LHC in recent years, the exploration of the terascale is
moving apace. The discovery of the Higgs boson by the ATLAS and CMS collaborations [1,2] has
set the keystone of the Standard Model into place, whereas new physics beyond the Standard Model
(BSM) is yet to reveal itself. As BSM physics retreats to less readily accessible regions of param-
eter space it is natural to focus our attention on high precision Standard Model phenomenology.
High precision phenomenology is essential for realistically simulating the hadron collider environ-
ment, especially when working within the framework of perturbation theory where many physical
features of hadron collisions only enter the game through higher order perturbative corrections.

The excellent performance of the LHC, in particular with respect to the jet energy scale (JES)
calibration [3,4], demands next-to-next-to leading order (NNLO) perturbative corrections for a va-
riety of Standard Model processes and so in recent years some considerable effort of the theory
community has been spent developing methods to perform NNLO calculations. Some of these
methods are restricted to colourless final-states or fully inclusive calculations [5, 6]. Others have
pursued a fully numerical approach following the innovation of the STRIPPER method [7] which
has subsequently been applied to various studies of top pair [8] and Higgs plus one jet produc-
tion [9]. The antenna subtraction method was developed for electron-positron collisions and suc-
cessfully applied to the process e+e−→ 3 j at NNLO [10]. In recent years this method has been
extended to accommodate hadronic initial states [11–15] and successfully applied to dijet produc-
tion for a set of partonic channels [16–18].

Antenna subtraction is currently the only available method for performing NNLO calculations
containing generic coloured initial and final states with analytic pole cancellation. For this reason
it is important to develop the method in full generality so that it may deal with a broad range of
processes. One aspect of antenna subtraction which has not received widespread attention is the is-
sue of sub-leading colour corrections to observables. In this context, the phrase sub-leading colour
refers generically to any terms suppressed by at least 1/N2 relative to the leading term when ex-
panding the squared matrix element as a series in N. The essential issue for these corrections is that
the matrix element cannot, in general, be written as a sum of squared coherent partial amplitudes,
where the colour ordered amplitude and its conjugate share the same colour ordering, e.g.,

Mn(σ(1), · · · ,σ(n)) = M †
n (σ(1), · · · ,σ(n))Mn(σ(1), · · · ,σ(n)). (1.1)

At leading colour, due to colour coherence, the matrix element is guaranteed to be in this form.
Similarly, for processes with a small number of external legs (n≤ 5) it can often be arranged such
that the matrix element is formed from squared coherent partial amplitudes. In these cases, antenna
subtraction is particularly well suited to remove the IR divergences from the matrix element. The
ability of antennae to remove such divergences can be traced back to the fact that antennae are
defined to be squared partial amplitudes. The sub-leading colour contributions for a sufficiently
complicated process, such as dijet production, therefore pose a question; Can the antenna subtrac-
tion method, as it currently stands, be successfully applied to the kind of incoherent interferences
generically found at sub-leading colour?

To address this question we consider the sub-leading colour corrections to dijet production via
the “gluons only” approximation, in which all external states are gluons and no quarks propagate
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Colourful antenna subtraction for gluon scattering

in any loops, i.e. NF = 0. This process is convenient for studying the behaviour of incoherent
interferences because the double real and real-virtual corrections can be written entirely in terms
of such interferences.

The IR factorization behaviour of incoherent interferences is more complicated than that of
squared coherent partial amplitudes. One approach to constructing the subtraction terms is to
examine the IR behaviour of the matrix element in each limit and match those limits to the known
IR behaviour of the antenna functions. For a general process this can be cumbersome as there are
many single and double unresolved limits to consider, each of which must be considered separately.

An alternative approach is to use the IR pole structure of the one- and two-loop matrix ele-
ments, clearly exposed by Catani [19], to guide the construction of the subtraction term. In order to
do this a set of integrated dipoles [17] are introduced, constructed from integrated antenna functions
and mass factorization kernels, such that the singularities of these dipoles reproduce the virtual IR
structure elucidated by Catani’s formalism. Synthesising the colour stripped integrated dipoles with
the colour space formalism allows single and double virtual subtraction terms to be constructed for
general processes. Furthermore, there exists a clear and unambiguous link between these integrated
dipoles and their unintegrated counterparts. This link suggests that the colour space formalism can
also be used to guide the construction of the unintegrated subtraction terms. In a recent paper [18]
both approaches were taken and found to be complementary; in this talk I will briefly outline the
colourful antenna subtraction approach used for the calculation of the sub-leading colour contribu-
tion to jet production via gluon scattering.

2. Integrated antenna dipoles

The IR pole structure is particularly transparent when formulated in terms of insertion opera-
tors acting on states in colour space [19]. The principle observation of colourful antenna subtraction
is that an analogous set of single (`= 1) and double (`= 2) unresolved insertion operators can be
defined in terms of the known integrated antennae, and where necessary, mass factorization kernels,

JJJ(`)(ε) = 2 ∑
(i, j)

JJJ(`)2 (i, j) TTT i ·TTT j, (2.1)

where the sum runs over all pairs of partons. The type of integrated dipole is determined by the
parton species and whether the partons in the dipole are in the initial- or final-state. The poles
of the JJJ(2)(ε) operator are not in a one-to-one correspondence with the relevant piece of Catani’s
III(2)(ε) operator due to the fact that the antenna dipoles are inherently real functions and also there
are finite differences between the JJJ(1)(ε) and III(1)(ε) operators; however, these differences drop out
in the combination of operators used to construct the double virtual subtraction term.

In the “gluons only” approximation the colour stripped single unresolved dipoles are given
by [18],

JJJ(1)2 (1g,2g) =
1
3
F 0

3 (s12), (2.2)

JJJ(1)2 ( ˆ̄1g,2g) =
1
2
F 0

3,g(s1̄2)−
1
2

Γ
(1)
gg (x1)δ (1− x2), (2.3)

JJJ(1)2 ( ˆ̄1g,
ˆ̄2g) = F 0

3,gg(s1̄2̄)−
1
2

Γ
(1)
gg (x1)δ (1− x2)−

1
2

Γ
(1)
gg (x2)δ (1− x1), (2.4)
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where the hatted arguments denote initial-state gluons. Similarly, the colour stripped double unre-
solved integrated dipoles are given by [18],

JJJ(2)2 (1g,2g) =
1
4
F 0

4 (s12)+
1
3
F 1

3 (s12)+
1
3

b0

ε
F 0

3 (s12)

((
|s12|
µ2

)−ε

−1
)

− 1
9
[
F 0

3 ⊗F 0
3
]
(s12), (2.5)

JJJ(2)2 ( ˆ̄1g,2g) =
1
2
F 0

4,g(s1̄2)+
1
2
F 1

3,g(s1̄2)+
1
2

b0

ε
F 0

3,g(s1̄2)

((
|s1̄2|
µ2

)−ε

−1
)

− 1
4
[
F 0

3,g⊗F 0
3,g
]
(s1̄2)−

1
2

Γ
(2)
gg (x1)δ (1− x2), (2.6)

JJJ(2)2 ( ˆ̄1g,
ˆ̄2g) = F 0,adj

4,gg (s1̄2̄)+
1
2
F 0,n.adj

4,gg (s1̄2̄)+F 1
3,gg(s1̄2̄)+

b0

ε
F 0

3,gg(s1̄2̄)

((
|s1̄2̄|
µ2

)−ε

−1
)

−
[
F 0

3,gg⊗F 0
3,gg
]
(s1̄2̄)−

1
2

Γ
(2)
gg (x1)δ (1− x2)−

1
2

Γ
(2)
gg (x2)δ (1− x1), (2.7)

where the integrated antennae and mass factorization kernels may be found in [20].

3. Subtraction terms

To successfully compute the NNLO correction to jet production, we must construct the double
real, real-virtual and double virtual subtraction terms, denoted by dσ̂S

NNLO, dσ̂T
NNLO and dσ̂U

NNLO
respectively. Many of these subtraction terms are connected to each other via analytic integration;
the integration of a piece of one generates a piece of another. For reference throughout this section,
a schematic depiction of the links between terms is shown in Fig. 1.

JJJ(2)2 〈A 0
4 |TTT i ·TTT j|A 0

4 〉= 0 JJJ(1)2 〈A 0
4 |TTT i ·TTT j|A 1

4 〉 JJJ(1)2 JJJ(1)2 〈A 0
4 |(TTT i ·TTT j)(TTT k ·TTT l)|A 0

4 〉

JJJ(1)2 〈A 0
5 |TTT i ·TTT j|A 0

5 〉 XXX0
3〈Ã 0

4 |TTT I ·TTT J|Ã 1
4 〉 XXX0

3JJJ(1)2 〈Ã 0
4 |(TTT I ·TTT J)(TTT K ·TTT L)|Ã 0

4 〉

XXX0
3〈Ã 0

5 |TTT I ·TTT J|Ã 0
5 〉 XXX0

3XXX0
3〈
˜̃
A 0

4 |(TTT I ·TTT J)(TTT K ·TTT L)|
˜̃
A 0

4 〉

Figure 1: Schematic depiction of the links between subtraction terms at the double virtual (green), real-
virtual (blue) and double real (red) levels for gluon scattering at sub-leading colour. Arrows denote links
between terms related by analytic integration such that the unintegrated subtraction terms may be inferred
from their integrated counterparts.

In colourful antenna subtraction the natural place to start is with the double virtual subtraction
term. This subtraction term must remove all poles in ε = 2−d/2 from the two-loop matrix element
so that the four-dimensional remainder can be numerically integrated. The IR pole structure of
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Colourful antenna subtraction for gluon scattering

the two-loop matrix element can be correctly reproduced using the single and double unresolved
insertion operators and thus removed using the colourful double virtual subtraction term,

dσ̂
U
NNLO =−NLO

(
αs

2π

)2
C̄(ε)2

∫ dz1

z1

dz2

z2
dΦ2(p3, p4;z1 p1,z2 p2) J

(2)
2 (p3, p4)(

2Re〈A 0
4 |JJJ(1)(ε)|A 1

4 〉−〈A 0
4 |[JJJ(1)(ε)⊗ JJJ(1)(ε)]|A 0

4 〉+N〈A 0
4 |JJJ(2)(ε)|A 0

4 〉
)
, (3.1)

where |A `
4 〉 is the `-loop four gluon amplitude as an abstract vector in colour space, J

(2)
2 is the

jet function, C̄(ε) = 8π2C(ε) = (4π)εe−εγ and NLO takes into account any overall factors arising
from initial-state colour and spin averaging which are not explicitly included in the evaluation of
the colour charge sandwiches. It is useful to define the leading colour, LC, and sub-leading colour,
SLC, projectors which single out the leading and sub-leading colour contributions. Evaluating the
colour algebra reveals that,

SLC
(
N〈A 0

4 |TTT i ·TTT j|A 0
4 〉
)
= 0, (3.2)

and so the third term in Eq. (3.1), involving JJJ(2)(ε), does not contribute to the sub-leading colour
subtraction term. This has implications for the double real and real-virtual subtraction terms as
it implies there are no four-parton antennae in the double real, nor one-loop antennae in the real-
virtual subtraction terms. Evaluating the other terms explicitly yields a subtraction term composed
of integrated three-parton antennae and reduced matrix elements.1

The real-virtual subtraction term contains essentially three components corresponding to the
left, centre and right blue boxes in Fig. 1:

• dσ̂
T,a
NNLO which removes all explicit poles from the one-loop matrix element.

• dσ̂
T,b1
NNLO which removes all single unresolved divergences from the one-loop matrix element.

• dσ̂
T,b2
NNLO and dσ̂

T,c
NNLO which remove any spurious poles or divergences introduced by the

previous two contributions.

The poles of the one-loop matrix element are reproduced by the single unresolved insertion operator
and so the appropriate subtraction term is given by,

dσ̂
T,a
NNLO = −NLO

(
αs

2π

)2 C̄(ε)2

C(ε)

∫ dx1

x1

dx2

x2
dΦ3(p3, p4, p5;x1 p1,x2 p2)

× 2Re〈A 0
5 |JJJ(1)(ε)|A 0

5 〉J
(3)

2 (p3, p4, p5), (3.3)

where the sum over pairs of partons inside the definition of the insertion operator now runs over
the set of five external gluons. As shown in Fig. 1, this term is the integrated version of the single
unresolved double real subtraction term, dσ̂

S,a
NNLO.

In single unresolved limits, the one-loop matrix element typically factorizes into two con-
tributions: one containing a tree-level singular function multiplied by a one-loop reduced matrix

1It is noted that in this subtraction term, as with all formulae for the process, the mass factorization kernels in the
integrated dipoles mutually cancel, leaving only integrated antennae. This is necessary as the mass factorization kernels
are only present at leading colour for this process.
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Colourful antenna subtraction for gluon scattering

element, and another containing a one-loop singular function multiplied by a tree-level reduced
matrix element.

The one-loop singular functions are approximated by one-loop antennae and so upon integra-
tion this set of subtraction terms contributes to the JJJ(2)2 dipoles. It has already been shown that, for
this process, any terms contributing to this dipole are zero at sub-leading colour and so the one-loop
antenna component of dσ̂

T,b1
NNLO is absent.

The only contribution to the double virtual subtraction term that is proportional to the reduced
one-loop matrix element is the first term in Eq. (3.1). It is from this double virtual subtraction
term that dσ̂

T,b1
NNLO can be inferred. By replacing the integrated dipole by the relevant unintegrated

antenna, summing over all potentially unresolved gluons, and applying the relevant phase space
map on the reduced matrix element (fixed by the antenna), we obtain the appropriate real-virtual
subtraction term,

dσ̂
T,b1
NNLO = −NLO

(
αs

2π

)2 C̄(ε)2

C(ε)

∫ dx1

x1

dx2

x2
dΦ3(p3, p4, p5;x1 p1,x2 p2)

× 2Re ∑
i, j,k

X0
3 (i, j,k) SLC

(
〈Ã 0

4 |TTT I ·TTT K |Ã 1
4 〉
)

J
(2)

2 (pI, pK), (3.4)

where the type of antenna depends on which partons are involved, e.g. X0
3 (

ˆ̄1, j, ˆ̄2) = F0
3 (

ˆ̄1, j, ˆ̄2),
X0

3 (
ˆ̄1, j,k) = f 0

3 (
ˆ̄1, j,k), X0

3 (i, j,k) = f 0
3 (i, j,k). The antenna is associated with a phase space map-

ping which maps the three partons in the antenna down to two composite partons (i, j,k)→ (I,K)

from which the reduced matrix elements are constructed. The remaining real-virtual subtraction
terms, dσ̂

T,b2
NNLO and dσ̂

T,c
NNLO are also fixed, either directly or indirectly, by the double virtual sub-

traction term and so can be constructed in a similar fashion to dσ̂
T,b1
NNLO. This process involves

introducing a set of subtraction terms which are linked to the double real subtraction term by ana-
lytic integration, as shown in Fig. 1.

The double real subtraction term contains a contribution proportional to a five parton reduced
matrix element, dσ̂

S,a
NNLO and terms proportional to four parton reduced matrix elements, dσ̂

S,b,c,d,e
NNLO .

The former can be inferred from the only real-virtual subtraction term proportional to a five parton
matrix element, dσ̂

T,a
NNLO, by replacing the integrated dipole with the relevant antenna and inducing

a phase space map on the reduced matrix element,

dσ̂
S,a
NNLO = −NLO

(
αs

2π

)2 C̄(ε)2

C(ε)2

∫
dΦ4(p3, p4, p5, p6; p1, p2)

× 2Re ∑
i, j,k

X0
3 (i, j,k) SLC

(
〈Ã 0

5 |TTT I ·TTT K |Ã 0
5 〉
)

J
(3)

2 (pI, pK , pl). (3.5)

The remaining double real subtraction terms are fixed by the remaining terms in the real-virtual
and double virtual subtraction terms. Explicit colour summed formulae for all subtraction terms
can be found in [18].

4. Numerical results

By evaluating the subtraction terms expicitly, the poles of the subtraction terms can be ana-
lytically cancelled against those of the one- and two-loop matrix elements. The remaining four di-
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Figure 2: The percentage contribution of the sub-leading colour to full colour NNLO correction, δ , for the
single jet inclusive transverse energy distribution as a function of pT .

mensional matrix elements and subtraction terms can then be implemented in a parton-level Monte
Carlo generator and integrated numerically.

To test the reliability of the subtraction terms derived for this process we consider the single
jet inclusive cross section for proton-proton collisions at a centre of mass energy

√
s = 8 TeV.

We apply the anti-kt jet finding algorithm with R = 0.7 and require jets with pT ≥ 80 GeV at
central rapidity |y| ≤ 4.4. The MSTW08NNLO gluon parton distribution functions are used and
the renormalization and factorization scales are set to the pT of the leading jet.

To quantify the size of the sub-leading colour correction to gluon scattering for dijet production
we can consider separating the cross section into LO, NLO and NNLO coefficients and further
partitioning the NNLO coefficient into leading colour and sub-leading colour contributions,

dσ = α
2
s A+α

3
s B+α

4
s (CLC +CSLC). (4.1)

In Fig. 2 we plot the ratio of the sub-leading colour contribution to the full NNLO coefficient as a
function of pT ,

δ =
CSLC

CLC +CSLC
. (4.2)

Updated full colour single jet inclusive, double differential and dijet invariant mass distributions in
the gluons only approximation can be found in [18].

5. Summary

In this talk I have approached the issue of extending antenna subtraction to processes involving
incoherent interferences of partial amplitudes, which are generically encountered in sub-leading
colour calculations. A set of integrated dipoles can be defined whose pole structure can be matched
to the well understood IR pole structure of two-loop matrix elements. Using these functions, the
double virtual subtraction term can be immediately written down. The various components of the
double real and real-virtual subtraction terms can also be inferred either from the pole structure of
the matrix elements or from the algorithmically generated double virtual subtraction terms..

By applying this method to sub-leading colour gluon scattering, it was found that the colour-
ful antenna subtraction terms remove all poles in ε from the double real and real-virtual matrix
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elements and subtract all IR divergence associated with unresolved partons. The resulting antenna
subtracted cross sections were obtained by numerical integration and produce a positive correction
to the leading colour cross section of between 8% at low pT to 15% at high pT . The magnitude of
this result is in line with expectations given that the sub-leading colour correction is suppressed by
a factor of 1/N2 relative to the leading colour contribution.

The colourful antenna approach treats leading colour and sub-leading colour calculations on an
equal footing. It requires no new antennae, all process-dependent information is encoded through
the colour algebra and reduced matrix elements and it has been shown to produce numerically con-
vergent results for a specific calculation. It is therefore a useful extension of the antenna subtraction
method, in particular for sub-leading colour calculations and we anticipate its use for additional
sub-leading colour corrections to dijet production in the future.
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