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We show explicitly how to employ known soft and collinear limits of scattering amplitudes to
construct subtraction terms for NNLO computations, andpresent numerical results for the gluon-
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We describe in this contribution a first calculation of Higgs-boson production in association
with a jet at next-to-next-to-leading order in perturbative QCD [1]. This result is urgently needed in
order to reduce the theoretical uncertainties hindering a precise extraction of the Higgs properties at
the LHC. Currently, the theoretical errors in the one-jet bin comprise one of the largest systematic
errors in Higgs analyses, particularly in the WW final state. There are two theoretical methods one
can pursue to try to reduce these uncertainties. The first is to resum sources of large logarithmic
corrections to all orders in QCD perturbation theory. An especially pernicious source of large
logarithmic corrections comes from dividing the final state into bins of exclusive jet multiplicities.
An improved theoretical treatment of these terms has been pursued in both the zero-jet [2, 3, 4,
5, 6] and one-jet [7, 8] bins. The second, which we discuss here, is to compute the higher-order
corrections to the next-to-next-to-leading order (NNLO) in perturbative QCD. Both are essential to
produce the reliable results necessary in experimental analyses. In this contribution we give a brief
overview of the calculational framework that was used to obtain the NNLO calculation for Higgs
plus jet production, and present initial numerical results.

1. Notation and setup

We begin by presenting the basic notation needed to describe our calculation. We use the
QCD Lagrangian, supplemented with a dimension-five non-renormalizable operator that describes
the interaction of the Higgs boson with gluons in the limit of very large top quark mass:

L =−1
4

G(a)
µνG(a)µν −λHggHG(a)

µνG(a)µν . (1.1)

Here, G(a)
µν is the field-strength tensor of the gluon field and H is the Higgs-boson field. The Wilson

coefficient λHgg through NNLO in QCD can be found in Ref. [9, 10]. The leading electroweak
corrections [11] and mixed QCD-electroweak corrections [12] are also known, as are higher-order
QCD corrections in theories beyond the Standard Model [13, 14, 15]. Matrix elements computed
with the Lagrangian of Eq. (1.1) need to be renormalized. Two renormalization constants are re-
quired to do so: one which relates the bare and renormalized strong coupling constants, and another
which ensures that matrix elements of the HGG dimension-five operator are finite. The expressions
for these quantities are given in Ref. [1]. We note that the Lagrangian of Eq. (1.1) neglects light
fermions, as will the initial numerical results presented. We comment on the phenomenological
impact of this approximation later in this section.

Renormalization of the strong coupling constant and of the effective Higgs-gluon coupling re-
moves ultraviolet divergences from the matrix elements. The remaining divergences are of infrared
origin. To remove them, we must both define and compute infrared-safe observables, and absorb
the remaining collinear singularities by renormalizing parton distribution functions. Generic in-
frared safe observables are defined using jet algorithms. For the calculation described here we
employ the k⊥-algorithm.

Collinear singularities associated with gluon radiation by incoming partons must be removed
by additional renormalization of parton distribution functions. We describe how to perform this
renormalization in what follows. We denote the ultraviolet-renormalized partonic cross section
by σ̄(x1,x2), and the collinear-renormalized partonic cross section by σ(x1,x2). Once we know
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σ(x1,x2), we can compute the hadronic cross sections by integrating the product of σ and the
gluon distribution functions over x1 and x2:

σ(p+ p→ H + j) =
∫

dx1dx2 g(x1)g(x2) σ(x1,x2). (1.2)

We write the collinear-renormalized and ultraviolet-renormalized partonic cross section through
NNLO as

σ = σ
(0)+

(
αs

2π

)
σ
(1)+

(
αs

2π

)2
σ
(2). (1.3)

We note that although finite, the σ (i) still depend on unphysical renormalization and factorization
scales because of the truncation of the perturbative expansion. In the following, we will consider for
simplicity the case of equal renormalization and factorization scales , µR = µF = µ . The residual
µ dependence is easily determined by solving the renormalization-group equation order-by-order
in αs.

2. Calculational framework

It follows from the previous section that in order to obtain σ (2) at a generic scale, apart from
lower-order results we need to know the NNLO renormalized cross section σ̄ (2) and convolutions
of NLO and LO cross sections with the various splitting functions which appear in the collinear
counterterms. Up to terms induced by the renormalization, there are three contributions to σ̄ (2) that
are required:

• the two-loop virtual corrections to gg→ Hg;

• the one-loop virtual corrections to gg→ Hgg;

• the double-real contribution gg→ Hggg.

We note that helicity amplitudes for all of these processes are available in the literature. The two-
loop amplitudes for gg→ Hg were recently computed in Ref. [16]. The one-loop corrections to
gg→Hgg and the tree amplitudes for gg→Hggg are also known, and are available in the form of
a Fortran code in the program MCFM [17].

Since all ingredients for the NNLO computation of gg→H + jet have been available for some
time, it is interesting to understand what has prevented this calculation from being performed.
The main difficulties with NNLO calculations appear when we attempt to combine the different
contributions, since integration over phase space introduces additional singularities if the required
number of jets is lower than the parton multiplicity. To perform the phase-space integration, we
must first isolate singularities in tree- and loop amplitudes. It required a long time to establish a
convenient way to do this.

The computational method that we will explain shortly is based on the idea that relevant sin-
gularities can be isolated using appropriate parametrizations of phase space and expansions in
plus-distributions. To use this approach for computing NNLO QCD corrections, we need to map
the relevant phase space to a unit hypercube in such a way that extraction of singularities is straight-
forward. It is clear that the correct variables to use are the re-scaled energies of unresolved partons
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and the relative angles between two unresolved collinear partons. However, the problem is that
different partons become unresolved in different parts of the phase space. It is not immediately
clear how to switch between different sets of coordinates and cover the full phase space.

We note that for NLO QCD computations, this problem was solved in Ref. [18], where it was
explained that the full phase space can be partitioned into sectors in such a way that in each sector
only one parton (i) can produce a soft singularity and only one pair of partons (i j) can produce
a collinear singularity. In each sector, the proper variables are the energy of the parton i and the
relative angle between partons i and j. Once the partitioning of the phase space is established
and proper variables are chosen for each sector, we can use an expansion in plus-distributions
to construct relevant subtraction terms for each sector. With the subtraction terms in place, the
Laurent expansion of cross sections in ε can be constructed, and each term in such an expansion
can be integrated over the phase space independently. Therefore, partitioning of the phase space
into suitable sectors and proper parametrization of the phase space in each of these sectors are the
two crucial elements needed to extend this method to NNLO. It was first suggested in Ref. [19] how
to construct this extension for double real-radiation processes at NNLO. We give a brief overview
of this technique in the next section.

3. An example: double-real emission corrections

We briefly present the flavor of our calculational methods by outlining how the double-real
emission corrections are handled. To start, we follow the logic used at NLO in Ref. [18] and
partition the phase space for the g(p1)g(p2)→ Hg(p3)g(p4)g(p5) process into separate structures
that we call ‘pre-sectors’ where only a given set of singularities can occur:

1
3!

dLips12→H345 = ∑
α

dLips(α)
12→H345, (3.1)

Here, α is a label which denotes which singularities can occur, and dLIPS denotes the standard
Lorentz-invariant phase space. At NNLO we can have at most two soft singularities and two
collinear singularities in each pre-sector, so as an example there will be an α labeling where p4 and
p5 can be soft, and where both can be collinear to p1. Within this particular pre-sector, which we
label as a ‘triple-collinear’ pre-sector, it is clear that the appropriate variables to describe the phase
space are the energies of gluons p4 and p5, and the angles between these gluons and the direction
of p1.

Our goal in introducing a parameterization is to have all singularities appear in the following
form:

I(ε) =
1∫

0

dxx−1−aεF(x), (3.2)

where the function F(x) has a well-defined limit lim
x→0

F(x)=F(0). Here, the F(x)/x structure comes

from the matrix elements, while the x−aε comes from the phase space. When such a structure is
obtained, we can extract singularities using the plus-distribution expansion

1
x1+aε

=− 1
aε

δ (x)+
∞

∑
n=0

(−εa)n

n!

[
lnn(x)

x

]
+

, (3.3)
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so that

I(ε) =
1∫

0

dx
(
−F(0)

aε
+

F(x)−F(0)
x

−aε
F(x)−F(0)

x
ln(x)+ ...

)
. (3.4)

The above equation provides the required Laurent expansion of the integral I(ε). We note that each
term in such an expansion can be calculated numerically, and independently from the other terms.

Unfortunately, no phase-space parameterization for double-real emission processes can imme-
diately achieve the structure of Eq. (3.2). Each pre-sector must be further divided into a number of
sectors using variable changes designed to produce the structure of Eq. (3.2) in each sector. Follow-
ing Ref. [19, 20], we further split the triple-collinear pre-sector mentioned above into five sectors
so that all singularities in the matrix elements appear in the form of Eq. (3.2). Explicit details for
these variables changes, and those for all other pre-sectors needed for the NNLO calculation of
Higgs plus jet, are presented in Ref. [1].

Once we have performed the relevant variables changes, we are left with a set of integrals
of the form shown in Eq. (3.4). We now discuss how we evaluate the analogs of the F(x) and
F(0) terms that appear in the full calculation. When all xi variables that describe the final-state
phase space are non-zero, we are then evaluating the gg→ Hggg matrix elements with all gluons
resolved. The helicity amplitudes for this process are readily available, as discussed above, and can
be efficiently evaluated numerically. When one or more of the xi vanish, we are then in a singular
limit of QCD. The factorization of the matrix elements in possible singular limits appearing in
double-real emission corrections in QCD has been studied in detail [21], and we can appeal to this
factorization to evaluate the analogs of the F(0). For example, one singular limit that appears in
all pre-sectors is the so-called ‘double-soft’ limit, in which both gluons p4 and p5 have vanishingly
small energies. The matrix elements squared factorize in this limit in the following way in terms of
single and double universal eikonal factors [21]:

|Mg1g2→Hg3g4g5 |
2 ≈C2

Ag4
s

[(
∑

i j∈Sp

Si j(p4)

)(
∑

kn∈Sp

Skn(p5)

)

+ ∑
i j∈Sp

Si j(p4, p5)−
3

∑
i=1

Sii(p4, p5)

]
|Mg1g2→Hg3 |2.

(3.5)

The advantage of using this factorization is that all structures on the right-hand side of Eq. (3.5)
are readily available in the literature and can be efficiently evaluated numerically; as discussed
the helicity amplitudes for gg→ Hg are known, and the Si j eikonal factors which appear are also
well-known functions. Using this and other such relations, the analogs of the integrals in Eq. (3.4)
appearing in the full theory can be calculated using known results. Similar techniques can be used
to obtain the other structures needed for the NNLO computation of Higgs plus jet production. For
a discussion of all relevant details, we refer the reader to Ref. [1].

4. Numerical results

We present here initial numerical results for Higgs production in association with one or more
jets at NNLO. A detailed series of checks on the presented calculation were performed in Ref. [1],
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and we do not repeat this discussion here. We compute the hadronic cross section for the production
of the Higgs boson in association with one or more jets at the 8 TeV LHC through NNLO in
perturbative QCD. We reconstruct jets using the k⊥-algorithm with ∆R = 0.5 and p⊥, j = 30 GeV.
The Higgs mass is taken to be mH = 125 GeV and the top-quark mass mt = 172 GeV. We use the
latest NNPDF parton distributions [22, 23] with the number of active fermion flavors set to five,
and numerical values of the strong coupling constant αs at various orders in QCD perturbation
theory as provided by the NNPDF fit. We note that in this case αs(mZ) = [0.130,0.118,0.118]
at leading, next-to-leading and next-to-next-to-leading order, respectively. We choose the central
renormalization and factorization scales to be µR = µF = mH .

In Fig. 1 we show the partonic cross section for gg→H+ j multiplied by the gluon luminosity
through NNLO in perturbative QCD:

β
dσhad

d
√

s
= β

dσ(s,αs,µR,µF)

d
√

s
×L (

s
shad

,µF), (4.1)

where β measures the distance from the partonic threshold,

β =

√
1−

E2
th
s
, Eth =

√
m2

h + p2
⊥, j + p⊥, j ≈ 158.55 GeV. (4.2)

The partonic luminosity L is given by the integral of the product of two gluon distribution func-
tions

L (z,µF) =
∫ 1

z

dx
x

g(x,µF)g
( z

x
,µF

)
. (4.3)

It follows from Fig. 1 that NNLO QCD corrections are significant in the region
√

s < 500 GeV.
In particular, close to partonic threshold

√
s ∼ Eth, radiative corrections are enhanced by thresh-

old logarithms lnβ that originate from the incomplete cancellation of virtual and real corrections.
There seems to be no significant enhancement of these corrections at higher energies, where the
NNLO QCD prediction for the partonic cross section becomes almost indistinguishable from the
NLO QCD one.

We now show the integrated hadronic cross sections in the all-gluon channel. We choose to
vary the renormalization and factorization scale in the range µR = µF = mH/2, mH , 2mH . After
convolution with the parton luminositites, we obtain

σLO(pp→ H j) = 2713+1216
−776 fb,

σNLO(pp→ H j) = 4377+760
−738 fb,

σNNLO(pp→ H j) = 6177−204
+242 fb.

(4.4)

We note that NNLO corrections are sizable, as expected from the large NLO K−factor, but the
perturbative expansion shows marginal convergence. We also evaluated PDF errors using the full
set of NNPDF replicas, and found it to be of order 5% at LO, and of order 1-2% at both NLO
and NNLO, similarly to the inclusive Higgs case [23]. The cross section increases by about sixty
percent when we move from LO to NLO and by thirty percent when we move from NLO to NNLO.
It is also clear that by accounting for the NNLO QCD corrections we reduce the dependence on
the renormalization and factorization scales in a significant way. The scale variation of the result
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Figure 1: Results for the product of partonic cross sections gg→ H + jet and parton luminosity in consecu-
tive orders in perturbative QCD at µR = µF = mh = 125 GeV. See the text for explanation.

decreases from almost 50% at LO, to 20% at NLO, to less than 5% at NNLO. We also note that
a perturbatively-stable result is obtained for the scale choice µ ≈ mH/2. In this case the ratio of
the NNLO over the LO cross section is just 1.5, to be compared with 2.3 for µ = mH and 3.06 for
µ = 2mH , and the ratio of NNLO to NLO is 1.2. A similar trend was observed in the calculation
of higher-order QCD corrections to the Higgs boson production cross section in gluon fusion. The
reduced scale dependence is also apparent from Fig. 2, where we plot total cross section as a
function of the renormalization and factorization scale µ in the region p⊥, j < µ < 2mh.

Finally, we comment on the phenomenological relevance of the “gluons-only” results for cross
sections and K-factors that we report. We note that at leading and next-to-leading order, quark-
gluon collisions increase the H + j production cross section by about 30 percent, for the input
parameters that we use in this paper. At the same time, the NLO K-factors for the full H + j cross
section are smaller by about 10−15% than the ‘gluons-only’ K-factors, presumably because quark
color charges are smaller than the gluon ones. Therefore, we conclude that the gluon-only results
can be used for reliable phenomenological estimates of perturbative K-factors but adding quark
channels will be essential for achieving precise results for the H + j cross section.
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