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1. Introduction and method

Vector boson pair production (γ γ , Z γ /W γ , Z Z, W W , W Z) is a key process in studying the
dynamics of the electroweak theory at the LHC. It enters as background not only for Higgs pro-
duction, but also for many other new-physics searches as it offers a large number of observables
which allow precise tests of the electroweak symmetry-breaking and in general of the non-abelian
gauge structure of the group SU(2)×U(1). With large production rates to be expected from the
future data taking at the LHC, vector boson pair production processes will become electroweak
precision observables. The high experimental precision must be matched by a comparably high ac-
curacy of the theoretical predictions, typically requiring next-to-leading order (NLO) electroweak
and next-to-next-to-leading order (NNLO) QCD corrections. At present the massless NNLO QCD
corrections are known only for γ γ and Z γ production [1, 2].

A full NNLO computation requires three different ingredients: the two-loop double-virtual
corrections to the partonic 2→ 2 process, the one-loop real-virtual corrections to the 2→ 3 process
for the production of the vector boson pair plus an additional parton, and the tree-level corrections
to the 2→ 4 process involving two extra partons.

In the case of vector boson pair production, the 2→ 3 and 2→ 4 ingredients have already been
known in the literature for some time [3–10]. On the other hand, the two-loop parton-level matrix
elements are known only for γ γ [11] and Z γ /W γ production [12, 13]. Finally, in the case of W W
production the two-loop virtual corrections are known in the high-energy approximation [14].

The analytic computation of the two-loop matrix elements for massive vector boson pair pro-
duction is still an outstanding task and it proceeds as follows [15]. Consider the 2→ 2 process:

q(p1)+ q̄(p2)→V (q1)+V (q2)

where V are the massive vector bosons and:

p2
1 = p2

2 = 0 , q2
1 = q2

2 = m2 .

Defining the usual Mandelstam variables in the Minkowski region:

s = (p1 + p2)
2 = m2 (1+ x)2

x
, t = (p2−q1)

2 =−m2 y , u = (p2−q1)
2 =−m2 z (1.1)

then the physical region for vector boson pair production is given by (see fig.(1)):

0 < x < 1 , x < z <
1
x
. (1.2)

Starting from the Feynman diagrammatic representation of the two-loop amplitude, we iden-
tify the two-loop scalar integrals that contribute to the process. The latter can be organised in two
planar topologies, that we named Topo A and Topo B, and a third topology, named Topo C, which
contains all non-planar integrals. We choose the propagators of the three topologies as listed in
Table 1.

Employing integration-by-parts (IBPs), Lorentz and symmetry identities [16, 17], together
with the Laporta algorithm [18] as implemented in Reduze2 [19,20], we expressed all integrals as
combination of a small number of Master Integrals (MIs).
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Figure 1: Dalitz plot for the 2→ 2 scattering kinematics.

Topo A Topo B Topo C

k2 k2 k2

l2 l2 l2

(k− l)2 (k− l)2 (k− l)2

(k− p1)
2 (k− p1)

2 (k− p1)
2

(l− p1)
2 (l− p1)

2 (l− p1)
2

(k− p1− p2)
2 (k− p1 +q1)

2 (k− p1− p2)
2

(l− p1− p2)
2 (l− p1 +q1)

2 (k− l−q1)
2

(k− p1− p2 +q1)
2 (k− p1− p2 +q1)

2 (l− p1− p2 +q1)
2

(l− p1− p2 +q1)
2 (l− p1− p2 +q1)

2 (k− l− p1− p2)
2

Table 1: Propagators in the three different auxiliary topologies used to represent all two-loop 4-point inte-
grals with two massless and two massive legs with the same mass.

The computation of the latter is performed with the differential equation method [21–24].
Differential equations for the integrals under consideration are derived at the basis of the inte-
grands. The master integrals are then determined by solving these differential equations, matched
to appropriate boundary conditions (that usually correspond to integrals in special points or with
fewer scales). By direct inspection of the differential equations it becomes clear that all MIs can
be expressed in terms of Generalised Harmonic PolyLogarithms (GHPLs) [25–29]. In order to
determine the boundary conditions and to perform necessary transformations on the differential
equations, we made extensive use of the Symbol and Co-product formalism [30–32].
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2. The planar master integrals

As reported in [15], we computed all planar two-loop master integrals contributing to ZZ and
WW production in massless QCD. The first topology, Topo A, contains 26 genuine two-loop MIs,
out of which 13 were new double-boxes. The second topology, Topo B, contains instead 13 genuine
two-loop MIs and 9 new double-boxes. The double-boxes are:
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The numbers in brackets indicate that the corresponding sector is reduced to more than one MI.

Employing the variables defined above (1.1), we find that all MIs in both topologies can be
expressed in compact form as function of GHPLs with the following alphabet:

G(~f (x) ; z) with f j(x) =
{

1,0,−1,x,
1
x
,

x
1+ x+ x2 ,

1+ x+ x2

x
,
1+ x2

x

}
, (2.1)

G(~a ; x) with a j =

{
1,0,−1,+i,−i,

1+ i
√

3
2

,
1− i
√

3
2

}
. (2.2)

Similar sets of GHPLs have been already encountered in the computation of the two-loop
corrections to tt̄ production [33–36]. The presence of non-linear indices in the GHPLs comes
directly from the non-linear kinematical constraints in (1).
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3. Status on the computation of the non-planar master integrals

The computation of the non-planar MIs proceeds in principle in the very same way as outlined
in the section above. Performing the reduction to MIs we find that this topology contains 16 genuine
two-loop MIs, out of which 13 are new double-boxes that still need to be computed.

In deriving the differential equations for all integrals in this topology, it turns out to be easy
to find a basis of MIs for which the differential equations decouple (at least in the limit for d→ 4)
for all those sectors which contain more than one MI. With any choice of MIs that respects this ba-
sic requirement, the integration of the differential equations themselves, and so the determination
of the functional form of the result, remains as straightforward as in the planar case. In particu-
lar, as already stated before, by direct inspection of the equations, it becomes clear that the very
same set of GHPLs employed for representing the planar integrals (2.1), (2.2), is enough also for
representing all non-planar integrals.

Nevertheless, the analytic structure of non-planar integrals is more involved, since, as it is
well known, integrals belonging to non-planar topologies are expected to have cuts in all three
Mandelstam variables (s, t,u) at the same time. This feature makes in general more difficult the
determination of the boundary conditions needed for fixing the exact solution of the differential
equations.

In order to handle the complexity of this computation it might turn out to be useful to organize
it following the strategy outlined in [37] (see also the proceedings of this conference). There are
indications that a basis for the non-planar integrals, which respects the basic requirements in [37]
can be found, and so that the system of differential equations can be put in the general form:

∂x f (ε; x,z) = ε Ax(x,z) f (ε; x,z)

∂z f (ε; x,z) = ε Az(x,z) f (ε; x,z) (3.1)

where ε = (4− d)/2 is the dimensional regularisation parameter, f (ε; x,z) is the vector of all
master integrals in the topology, and Ax(x,z), Az(x,z) are matrices whose entries do not depend on
ε . The computation of the non-planar MIs is currently ongoing.

4. Conclusions

The computation of the two-loop corrections to the production of a pair of massive vector
bosons has been for a long time an outstanding task, principally due to the complexity of the
functions needed to represent the result, namely the generalized harmonic polylogarithms. In the
last years considerable progress has be made in the understanding of the algebraic and analytic
properties of these functions, so that the task appears finally within reach. We presented new results
for the planar master integrals required for the computation of the leading color contribution to Z Z
and W W production at two loop and showed who the symbol and coproduct formalism can be
successfully employed in order to perform this computation. The study of the remaining non-
planar topologies is still ongoing.
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