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1. Introduction

For many processes at hadron colliders in which heavy final states are produced the transverse
momentum spectrum is phenomenologically relevant. Examples of such processes are the produc-
tion of Higgs bosons, vector bosons or Drell-Yan pairs of high invariant mass. To consistently
describe the differential cross sections at values of the transverse momentum much smaller than
the invariant mass, one needs to resum the corresponding large logarithms to all orders in pertur-
bation theory. Pioneering work has been performed by the authors of [1]. In [2, 3] a framework
based on the soft-collinear effective theory (SCET) of quantum chromodynamics (QCD) has been
presented, which allows the proof of all order factorization theorems and renders gauge invariant
operator definitions of the objects of interest. These allow direct high order determinations of the
relevant objects from first principles.

The process independent objects of our interest are the transverse parton distribution functions
(TPDFs). The parton-to-parton version of these we will determine in perturbation theory to next-
to-next-to-leading order (NNLO). To control light-cone singularities appearing in the calculation
we use the analytic regulator as suggested in [4]. The TPDFs are generalizations of normal PDFs,
which describe the distribution of partons with specified energy fraction and transverse separation
inside the considered hadron. The additional description of the transverse scale is required, since
the transverse momentum of the final state which we wish to resolve is generated from recoiling
against the initial state radiation.

If this transverse scale resides in the perturbative regime, the TPDFs can be expressed as
Mellin convolutions of normal PDFs with perturbative matching kernels. We extract these kernels
up to NNLO. They are among others required for a next-to-next-to-next-to-leading-logarithmic
(N3LL) transverse momentum resummation. As a byproduct, we confirm the process specific
H (2) coefficients of [5, 6] and reextract the α2

s contributions of the DGLAP splitting kernels.
While the high order qT -resummation is one important application of the transverse factor-

ization and the TPDFs, they are also relevant for many other aspects in QCD. For example, they
are important to describe spin or azimuthal related observables as well as to understand the spin
structure of the proton and other hadrons.

2. Framework

Before generalizing our discussion to other processes, let us focus on Higgs production at
hadron colliders through gluon fusion. As discussed in [3] with SCET based arguments, the corre-
sponding differential cross section factorizes at small transverse momentum qT � mH as

d2σ

dq2
T dy

= σ0(µ)C2
t (m

2
t ,µ)

∣∣CS(−q2,µ)
∣∣2 g⊥µρg⊥νσ

∫ d2x⊥
2π

e−iq⊥·x⊥S (x⊥,µ)

×Bµν

g/N1
(z1,x⊥,µ)B̄

ρσ

g/N2
(z2,x⊥,µ)+O

(
q2

T

m2
H

)
, (2.1)

with the Higgs rapidity y and invariant mass q2 = m2
H as well as the momentum fractions z1,z2 =

e±y
√
(m2

H +q2
T )/s along the direction of the hadrons Ni. σ0(µ) is the Born level cross section.

The Wilson coefficients Ct and CS arise from the introduction of the effective ggH operator and

2



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
1
1

TPDFs at NNLO Thomas Lübbert

the matching to the SCET operator. They are given in [7, 8]. The soft function S is a correlator
of soft Wilson lines. The objects of our main interest are the TPDFs B and B̄ of the collinear
and anti-collinear region, respectively. Their naive form appearing above can be represented by the
operator matrix element [3]

Bµν

g/N(z,x⊥,µ) =−
z n̄·p
2π

∫
dt e−iztn̄·p

∑
X
〈N(p)|A µ

⊥ (tn̄+ x⊥)|X〉〈X |A ν

⊥ (0)|N(p)〉 , (2.2)

where the sum is over all intermediate states X . A µ are effective gluon fields as defined in [10]
which are dressed by Wilson lines to guarantee local gauge invariance. The transverse vectors are
orthogonal to the light-cone vectors n and n̄ which are specified by the momenta pµ = (n̄ · p/2)nµ

and p̄µ = (n · p̄/2)n̄µ of the colliding hadrons and fulfill n · n̄ = 2. To describe the partons coming
from the opposite direction, we need the function B̄µν

g/N which is defined by substituting p,n↔ p̄, n̄
in the formula above.

In order to regularize the light-cone singularities when evaluating higher order corrections for
these matrix elements, we introduce a factor (ν/n · k)α for each emitted parton with momentum k
following [4]. Here ν is an unphysical scale associated with the regulator. This prescription com-
bined with dimensional regularization regulates all singularities. In this scheme the soft function S

in Eqn. (2.1) reduces to a trivial factor of unity. While in Eqn. (2.2) the function B formally only
depends on a single physical scale x2

T =−x2
⊥, the additional regularization introduces an anomalous

dependence on the scale of the hard scattering, q2. Field theoretically, this is due to the breaking
of the rescaling invariance of the SCET Lagrangian by the additional regulator, and was called
“collinear anomaly” in [2]. The dependence on q can be obtained by studying the dependence on
the unphysical scale ν , which leads to a refactorization of the form [2, 3]

Bµν

g/N1
(z1,x⊥,µ)B̄

ρσ

g/N2
(z2,x⊥,µ) =

(
x2

T q2

4e−2γe

)−Fb
gg(x⊥,µ)

Bb,µν

g/N1
(z1,x⊥,µ)Bb,ρσ

g/N2
(z2,x⊥,µ) , (2.3)

where on the left hand side poles in α which can be present in both individual factors cancel
between them and we then set α to 0. The right hand side is then free of both α and the scale
ν . We identify the anomaly coefficient F and the two proper TPDFs B, which do not depend on
the hard scale q. The superscript “b” indicates that these are bare quantities which we regulate in
dimensional regularization with d = 4− 2ε dimensions. The ultra-violet (UV) poles are removed
by operator renormalization which takes the form

Bb,µν

g/N (z,x⊥) = ZB
g (x⊥,µ)Bµν

g/N(z,x⊥,µ) , (2.4)

Fb
gg(x⊥) = Fgg(x⊥,µ)+ZF

g (µ) . (2.5)

We work in the MS-scheme, where at each order beyond the LO, the renormalization factors Z
are pure poles in ε multiplied by the prefactor (4π)nεe−nεγE , with n numbering the perturbative
order (n = 1 for NLO and n = 2 for NNLO). The TPDFs are genuinely non-perturbative objects.
However, for xT � 1/ΛQCD, they can be matched onto the usual collinear PDFs as

Bµν

g/N(z,x⊥,µ) = ∑
i=q,q̄,g

Iµν

g/i (z,x⊥,µ)⊗φi/N(z,µ)+O(x2
T Λ

2
QCD) , (2.6)
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with perturbatively calculable coefficient functions I and the convolution defined by

f (z, · · ·)⊗g(z, · · ·)≡
∫ 1

z

dξ

ξ
f (ξ , · · ·)g(z/ξ , · · ·) . (2.7)

The renormalization of the collinear PDFs has the form

φ
b
i/N(z) = ∑

j=q,q̄,g
Zφ

i/ j(z,µ)⊗φ j/N(z,µ) . (2.8)

Together with the renormalization of the TPDFs it implies the renormalization

Ib,µν

g/ j (z,x⊥,µ) = ZB
g (x⊥,µ)∑

k
Iµν

g/k(z,x⊥,µ)⊗φk/ j(z,µ) . (2.9)

of the splitting kernels. The identification of the parton-to-parton PDFs in the last equation al-
ready uses one of our results which is that in our approach the perturbative corrections to the bare
parton-to-parton PDFs vanish and therefore the renormalized parton-to-parton PDFs are the Mellin
inverses of their renormalization kernels.

The splitting kernels obey the renormalization group (RG) equation

d
d ln µ

Iµν

g/ j(z,x⊥,µ) =
[
Γ

g
cusp(αs)L⊥−2γ

g(αs)
]
Iµν

g/ j(z)−2∑
k

Iµν

g/k(z)⊗Pk/ j(z) , (2.10)

which is implied by the RG invariance of the cross section and the RG equations of the Wilson
coefficients and the PDFs. The latter introduce the well known DGLAP splitting kernels Pk/ j.
Above, Γ

g
cusp is the cusp anomalous dimension in the adjoint representation, γg the gluon anomalous

dimension, L⊥ = ln(x2
T µ2e2γe/4) and we suppressed the scale dependences on the right hand side.

The rank-2 tensor Iµν can be decomposed into its two independent components via

Iµν

g/i (z,x⊥,µ) =
gµν

⊥
2

Ig/i(z,L⊥,αs)+

(
gµν

⊥
2

+
xµ

⊥xν

⊥
x2

T

)
I′g/i(z,L⊥,αs) . (2.11)

The contribution of the second Lorentz structure to transverse momentum resummation in gluon
fusion processes was first pointed out in [9]. A similar decomposition holds for the bare functions,
such as Bµν

g/i , for which we have

Bµν

g/i(z,x⊥,µ) =
gµν

⊥
d−2

Bg/i(z,L⊥,αs)+

(
gµν

⊥
d−2

+
xµ

⊥xν

⊥
x2

T

)
B′g/i(z,L⊥,αs) . (2.12)

The two functions can be projected out using

Bg/i(z,L⊥,αs) = g⊥µν Bµν

g/i(z,x⊥,µ) ,

B′g/i(z,L⊥,αs) =
1

d−3

(
g⊥µν +(d−2)

x⊥µx⊥ν

x2
T

)
Bµν

g/i(z,x⊥,µ) . (2.13)

Applying these projectors to the equations of this section, one straightforwardly finds the corre-
sponding equations for the individual tensor structures.
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Factorization theorems as Eqn. (2.1) hold for the production of any color neutral final state
with high invariant mass at small transverse momentum. In general the Wilson coefficients change
between different processes. For gg initiated processes, also the tensor structure of the hard function
can change. For processes initiated by qq̄ annihilation, the hard function and the corresponding
TPDFs are scalars. In their naive form, the quark TPDF can be represented by the matrix element

Bq/N(z,L⊥,αs) =
1

2π

∫
dt e−iztn̄·p

∑
X

6 n̄αβ

2
〈N(p)|χ̄α(tn̄+ x⊥)|X〉〈X |χβ (0)|N(p)〉 , (2.14)

where χ is an effective quark field dressed with collinear Wilson lines to guarantee local gauge
invariance. The TPDFs for anti-quarks are given by the same expression, with the argument tn̄+x⊥
carried by the field χβ . All points we discussed for the gluon case also hold for the (anti)-quark
case with the appropriate adjustments which are essentially the removal of the tensor indices and
the replacement of gluons by (anti)-quarks. Much of the relevant equations have already been
provided in [11].

3. Perturbative Calculation and Results

The main subject of this talk is to calculate the NNLO corrections of the coefficient functions
I in Eqn. (2.6), i.e. the coefficients I(2) in the expansion

Ii/ j(z,L⊥,αs) =
∞

∑
n=0

(
αs

4π

)n
I(n)i/ j (z,L⊥) . (3.1)

The first step is to evaluate the matrix elements in Eqns. (2.2, 2.14) with the hadronic state N re-
placed by some partonic state. With a gauge-invariant definition, we are free to choose any gauge
to perform the calculation. We have checked that the results are the same in both the Feynman
gauge and the light-cone gauge. The calculation in the light-cone gauge is particularly straightfor-
ward since the (anti)-collinear Wilson lines reduce to trivial factors of unity and the gauge-invariant
effective fields become the normal (anti)-quark and gluon fields. From the results of the matrix el-
ements, the I functions as well as the F functions can be extracted through the refactorization in
Eq. (2.3) and the matching in Eq. (2.6).

In the calculation, we need to deal with three kinds of singularities. The light-cone singular-
ities are regularized by the analytic regulator, and are absent in the final TPDFs. The other two,
namely the ultraviolet (UV) and infrared (IR) singularities, are both regularized by dimensional
regularization, and manifest themselves as poles in ε . While B contains IR-poles, for I they are
removed in the matching step (2.6). This step also allows the extraction of the renormalized PDFs
up to endpoint contributions in terms of the IR poles. From those the DGLAP splitting kernels
can be obtained. The endpoint contributions which appear in the parton-diagonal contributions are
fixed by physical constraints on the integrals containing those kernels over the momentum fraction
z.

The LO expression is trivial and just corresponds to the absorption of the incoming parton
by the effective quark or gluon field represented by the vertex ⊗⊗⊗. The NLO expression contains
contributions from the square of the diagram obtained from Fig. 1(b) after removing the loop and
using appropriate choices of partons. The unresolved parton carries momentum k, the incoming

5
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(a) (b) (c) (d) (e)

Figure 1: Amplitude topologies of the two NNLO contributions. The virtual-real (a,b) and double
real (c,d,e) contribution.

parton momentum p. The integrals appearing here can be solved in closed form as functions of
the two regulators ε and α . Our expanded results on the splitting kernels and anomaly coefficients
confirm the results of [2, 3]. Purely virtual corrections do not contribute as they lead to scaleless
integrals vanishing in dimensional regularization.

At NNLO, the TPDFs receive contributions from double real and virtual-real diagrams, which
are given in Fig. 1. Two different 1-loop amplitude topologies with unspecified partons are de-
picted in Fig. 1(a,b). By shrinking lines to single points, the remaining amplitude subtopologies
are obtained. For the virtual-real contribution, these diagrams are combined with the NLO diagram
described above. The VR diagrams contain divergences requiring coupling constant renormaliza-
tion, for which we include diagrams with the loop replaced by a counter-term.

The most difficult contribution is the double real one. The relevant diagrams without specified
partons are given in Fig. 1(c,d,e) where l and k− l are the momenta of the unresolved partons.
By shrinking propagators, the remaining amplitude topology can be identified. For the double real
NNLO contribution, these diagrams are combined with each other.

From the calculation and matching steps outlined above, we can extract the final results. The
NNLO anomaly coefficients are

F(2)
qq̄ (x⊥,µ)

CF
=

F(2)
gg (x⊥,µ)

CA
=CA

[808
27
−28ζ3 +

268
9

L⊥−8ζ2L⊥+
22
3

L2
⊥

]
−TF N f

[224
27

+
80
9

L⊥+
8
3

L2
⊥

]
.

The results of the matching kernels will be presented in terms of harmonic polylogarithms H~a ≡
H~a(z) introduced in [12], ζ -values as well as the functions

p̃qq(z) = 2
1+ z2

(1− z)+
, p̃qg(z) = 2

[
z2 +(1− z)2] ,

p̃gg(z) = 4
[

z
(1− z)+

+
1− z

z
+ z(1− z)

]
, p̃gq(z) = 2

1+(1− z)2

z
,

which are related to the lowest order DGLAP splitting kernels by removing the color factors and the
δ -function terms. To reduce the results to a compact size, we will only give their scale-independent
parts, i.e. their results at L⊥ = 0 which are obtained for µ = µx ≡ 4e−2γE/x2

T . The corresponding
expressions at µ 6= µx, containing powers of L⊥, can be straightforwardly obtained from these
expressions by solving the RG equations of Ii/ j.

6
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The scale independent part of the NNLO gluon-to-gluon kernel is given by

I(2)g/g(z,0) =C2
A

{
δ (1− z)

[
25
4

ζ4−
77
9

ζ3−
67
6

ζ2 +
1214

81

]
+ p̃gg(z)

[
−H0,0,0 +2H0,1,0 +2H0,1,1−2H1,0,0

+2H1,0,1 +2H1,1,0 +13ζ3−
202
27

]
+ p̃gg(−z)

[
−4H−1,−1,0 +2H−1,0,0 +4H0,−1,0−H0,0,0−2H0,1,0

−2H−1ζ2 +ζ3

]
+

[
−16(1+ z)H0,0,0 +

2(25−11z+44z2)

3
H0,0 +

8(1− z)(11− z+11z2)

3z

(
H1,0 +ζ2

)
− 2z

3
H1−

(701+149z+536z2)

9
H0 +

4(−196+174z−186z2 +211z3)

9z

]}
+CATF N f

{
δ (1− z)

[
28
9

ζ3

+
10
3

ζ2−
328
81

]
+

56
27

p̃gg(z)+
[

8(1+ z)
3

H0,0 +
4z
3

H1 +
4(13+10z)

9
H0−

4(−65+54z−54z2 +83z3)

27z

]}
+CF TF N f

{
8(1+ z)H0,0,0 +4(3+ z)H0,0 +24(1+ z)H0−

8(1− z)(1−23z+ z2)

3z

}
. (3.2)

The quark-to-gluon kernel is obtained as

I(2)g/q(z,0) =CFCA

{
p̃gq(z)

[
2H1,1,1 +2H0,1,1 +2H1,0,1 +2H1,1,0 +4H0,1,0−2H1,0,0−

11
3

H1,1

+
22
3
(
H1,0 +ζ2

)
+

76
9

H1 +12ζ3−
790
27

]
+ p̃gq(−z)

[
−4H−1,−1,0 +2H−1,0,0 +4H0,−1,0−2H−1ζ2

]
+

[
−4(2+ z)H0,0,0 +16H0,1,0 +4zH−1,0 +4zH0,1 +4zH1,1−

8(1+ z+2z2)

3
H1,0 +

2(36+9z+8z2)

3
H0,0

− 22z
3

H1−
2(249−6z+88z2)

9
H0−8ζ3−

2(4+13z+8z2)

3
ζ2 +

4(1+127z+152z2)

27

]}
+C2

F

{
p̃gq(z)

[
−2H1,1,1 +3H1,1−8H1

]
+

[
2(2− z)H0,0,0− (4+3z)H0,0−4zH1,1 +6zH1−5(3− z)H0

+(10− z)
]}

+CF TF N f

{
p̃gq(z)

[
4
3

H1,1−
20
9

H1 +
112
27

]
+

[
8z
3

H1−
40z
9

]}
, (3.3)

while the gluon-to-quark kernel reads

I(2)q/g(z,0) =CATF

{
p̃qg(z)

[
2H1,0,1 +2H1,1,0−2H1,1,1 +2H1,1−

22
3

H0,0 +
22
3
(
H1,0 +ζ2

)
+

68
9

H0 +2H1

− 149
27

]
+ p̃qg(−z)

[
−4H−1,−1,0 +2H−1,0,0 +4H0,−1,0 +2H−1,0−2H−1ζ2

]
+

[
4(1+2z)H0,0,0−16zH0,1,0

+
2(19−32z)

3
H0,0−4H−1,0−4H1,1−

4(13−38z)
9

H0−
4(4+5z+2z2)

3z

(
H1,0 +ζ2

)
+2(−2+ z)H1 +8zζ3

+8zζ2 +
2(172−166z+89z2)

27z

]}
+CF TF

{
p̃qg(z)

[
2H1,1,1−2H1,0,0 +2H0,1,1−2H0,0,0−2H1,1−2H1,0

−2H0,1−2H0,0−2H1−2H0 +14ζ3 +3ζ2−18
]
+

[
2(1−2z)H0,0,0 +(5+4z)H0,0 +4H0,1 +4H1,0

+4H1,1 +2(2− z)H1 +(12+7z)H0−6ζ2 +(23+3z)
]}

. (3.4)

The matching kernel I(2)q/q for a quark evolving to a quark of the same flavor was already calculated
by us in [11]. For a quark evolving to a quark (or anti-quark) of different flavor, it is instead given

7
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by

I(2)q′/q(z,0) =CF TF

{
4(1+ z)H0,0,0−

2(3+3z+8z2)

3
H0,0−

8(1− z)(2− z+2z2)

3z

(
H1,0 +ζ2

)
+

4(21−30z+32z2)

9
H0 +

2(1− z)(172−143z+136z2)

27z

}
. (3.5)

For a quark evolving to an anti-quark of the same flavor, the matching kernel is

I(2)q̄/q(z,0) =
(
CFCA−2C2

F
){

p̃qq(−z)
[

4H−1,−1,0−2H−1,0,0−4H0,−1,0 +2H0,1,0 +H0,0,0 +2H−1ζ2−ζ3

]
+

[
4(1− z)H1,0 +4(1+ z)H−1,0− (3+11z)H0 +2(3− z)ζ2−15(1− z)

]}
+ I(2)q′/q(z,0) . (3.6)

All other splitting kernels I(2)i/ j are related by flavor or charge conjugation symmetry to the results
provided here and in [11]. Most of the symmetries are already respected by not explicitly introduc-
ing N f different flavors, but only providing a quark q of unspecified (but same) flavor and a quark
q′ of different flavor. Another set of relations is obtained from the equality Iı̄/̄ = Ii/ j. Moreover,
up to NNLO one has Iq̄′/q = Iq′/q. As a check, we extended our calculation to such additional
combinations of partons and found agreement.

The process-independent matching kernels can among others be applied to N3LL qT resum-
mation in a wide range of processes at hadron colliders, in which a color-neutral final state with
high invariant mass and small transverse momentum is produced. Examples of such processes are
the production of a Drell-Yan pair, individual or multiple vector bosons or a Higgs boson. For the
last case, also the NLO I′g/ j functions are needed which we also determined. Since the LO of these
function vanishes, the NNLO I′g/ j functions are needed for N3LL accuracy only for gluon-gluon
initiated processes with off-diagonal tensor structure. They can be calculated in a similar way as
the kernels presented here.

We applied several non-trivial checks to our results. The first point we observe is that the
results are consistently free of poles in the two regulators α and ε . Moreover, they only depend on
mass scales in terms of L⊥. Especially, as required by consistency, they depend neither on the scale
ν associated to the analytic regulator nor on the hard scale q2. These points are not only a strong
confirmation of our results, but also of the consistency of the whole framework. Our calculation
also demonstrates that the analytic regulator of [4] can be practically and consistently applied in
involved NNLO calculations. Also the renormalization in terms of Eqn. (2.9) was highly constrain-
ing, as for the whole set of splitting kernels all ε poles could be removed by only specifying the two
multiplicative factors ZB

i , while the expressions for the parton-to-parton PDFs had been already im-
plied by the DGLAP splitting kernels. Furthermore, we confirmed that the functions Ii/ j(z,L⊥,αs)

obey the RG equation (2.10), which is yet another very strong test of our results.

In addition to these tests, we compared our results to literature. We could directly compare
our NLO results for the matching kernels as well as the NNLO anomaly coefficients to [2, 3] and
found agreement. Using our results of the matching kernels and the Wilson coefficients appearing
in the factorization theorems for Drell-Yan and Higgs production, respectively, we can confirm the
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corresponding H coefficients of [5, 6] up to α2
s by using the relations

H DY
qq̄← jk(z,αs) =

∣∣CV (−M2− iε,M)
∣∣2Iq/ j(z,0,αs)⊗ Iq̄/k(z,0,αs) , (3.7)

H H
gg← jk(z,αs,Lh) =C2

t (m
2
t ,mh)

∣∣CS(−m2
h− iε,mh)

∣∣2
×
[
Ig/ j(z,0,αs)⊗ Ig/k(z,0,αs)+ I′g/ j(z,0,αs)⊗ I′g/k(z,0,αs)

]
. (3.8)

Since the determination in [5, 6] is done in a completely different framework the agreement is yet
another very strong check for our as well as their results and frameworks.

In conclusion, we have calculated the perturbative parton-to-parton TPDFs at NNLO based on
a gauge invariant operator definition with an analytic regulator. We demonstrate for the first time
that such a definition works beyond the first non-trivial order. We extract from our calculation the
coefficient functions relevant for a N3LL qT resummation. Our results can be applied to all pro-
cesses yielding a colorless final state, provided the NNLO virtual corrections are known. Combined
with the work [13], our results could also be applied for tt̄ production. For gluon-gluon initiated
processes with a general spin structure, in addition to the results presented here the NNLO results
for the second tensor structure of the gluon TPDFs are required for a N3LL qT resummation. The
corresponding results will be presented in a forthcoming article.
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