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Compactifying formulas with FORM J. Vermaseren

1. Introduction

The project for which FORM [1, 2] was originally designed was automated one loop radiative
corrections. After a number of feasibility studies this project, named ESP (Experiment Simulation
Program), was started in 1984. The first thing to construct was algebraic capability. It took however
almost five years to complete the first version of this algebra program and in an attempt to show off
its power I got ‘sidetracked’ into three loop QCD. I did however keep contact with the automated
program scene which was coming up about then. This was mainly with the GRACE[3] group which
started also in the 80’s. It kept me constantly aware of the needs in this field.

Unless very drastic shortcuts are taken, a big problem in automated loop calculations is the
size of the expressions. And because the loop integrals are normally done numerically with the
help of Monte Carlo techniques, such formulas have to be evaluated many times.

We see the following nasty development:

• Better understanding of nature needs the study of more complicated reactions.

• More particles in the final state asks for more diagrams and more complicated loops.

• More complicated loops give longer formulas.

• More particles give a more complicated phase space.

• More complicated phase space means that we need many more Monte Carlo points for any
form of accuracy.

Conclusion: it is very important to squeeze the formulas to as short a representation as possible.
This has several important consequences:

• Less computer time needed (or better accuracy with the same amount of resources).

• The compiler might be able to compile the formulas.

• The full compiled formula may fit inside the computer.

In this talk we will see this illustrated.

2. Horner schemes

The simplest technique to economize on the evaluation of a polynomial in a single variable is
the Horner scheme[4]:

F(x) = 2+3x+5x2 +7x3 +11x4 +13x5

→ 2+ x(3+ x(5+ x(7+ x(11+13x)))) (2.1)

If we give the first representation to a non-optimizing compiler the most likely outcome will be that
we need 5 additions and 5+8 multiplications. In the second representation even a poor compiler
will need 5 additions and 5 multiplications.
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Compactifying formulas with FORM J. Vermaseren

Horner Order Formula Operations
x,y,z y+ x(−3+5z+ x(y(2z+ y(z(−3+5z))))) 8,5
x,z,y y+ x(−3+5z+ x(z(y(2−3y)+ z(5y2)))) 9,5
y,x,z x(−3+5z)+ y(1+ x2(2z)+ y(x2(z(−3+5z)))) 11,5
y,z,x −3x+ z(5x)+ y(1+ z(2x2)+ y(z(−3x2 + z(5x2)))) 14,5
z,x,y y−3x+ z(x(5+ x(y(2−3y)))+ z(x2(5y2))) 11,5
z,y,x −3x+ y+ z(5x+ y(2x2 + y(−3x2))+ z(y2(5x2))) 14,5

Table 1: The various Horner schemes and their operational costs.

For multivariate polynomials the situation is more complicated. We can see the expression as

F(x,y,z) = f0(y,z)+ f1(y,z)x+ f2(y,z)x2 + f3(y,z)x3 + · · ·
→ f0(y,z)+ x( f1(y,z)+ x( f2(y,z)+ x( f3(y,z)+ · · ·))) (2.2)

and next make a similar Horner expansion of the fi, each in terms of y and the coefficients fi, j(z),
etc.

The problem with such expansions is that the result depends on the order in which we select
the variables for the rewriting [5]. We can see that in the following example:

F(x,y,z) = y−3x+5xz+2x2yz−3x2y2z+5x2y2z2 (2.3)

Direct evaluation of this polynomial takes 18 multiplications and 5 additions (18,5). Depending on
the order of the Horner scheme we have the results of Tab. 1.

So, how do we know which scheme to use?
If the number of variables is rather limited (when n! is not very large) we can try all orderings.

For, say, 30 variables this is obviously not practical. In that case it is most common to use what is
called occurrence ordering: the variables are ordered by the number of occurrences in the formula.

When we were programming this we decided to try a number of random orderings just to see
how much better this occurrence ordering was. As an example we used a relatively simple GRACE
formula. The result was that occurrence ordering was better than average, but by no means optimal.
Hence the big question is how to obtain a (near) optimal ordering.

3. Monte Carlo tree search

The various multivariate Horner schemes can be represented as a tree in which the first time
we have to select one out of n variables, the next time one out of n− 1 variables, etc. In the end
we have a complete ordering with a number that tells us the cost of the evaluation of the formula.
This is very similar to games like for instance Go. The main difference is of course that in games
we have usually an opponent, but if we consider the selection of one variable as two ply, one move
followed by a move of the opponent, the simularity should be obvious.

In 2006 there was a breakthrough in game theory w.r.t. how to search through such trees[6, 7].
It is called Monte Carlo tree search or shortly MCTS. It is based on a weight formula that tells
which branch in the tree to select. For equal weights a random number determines which branch to
select. The tree is evaluated to the end (also in Go or Chess) and then an evaluation is made. For
each branchpoint the average score and the number of visits in the branches are remembered.
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Compactifying formulas with FORM J. Vermaseren

The formula most commonly used is (UCT stands for Upper Confidence level for Trees):

UCTi = 〈xi〉+2Cp

√
2logn

ni
(3.1)

The first term in the equation favours trying previously successful branches in the tree. This is
called exploitation. The second term favours branches that have not been visited much before (if
never, the term is even infinite). This is called exploration. The value of Cp determines the balance
between the two.

This approach can be successful if positive outcomes are clustered in the tree.
In games this often works because a good move will usually leave many more favourable end-

positions than a bad move. When the value of Cp is too small, we will only sample one seemingly
good branch in the tree and eventually end up in a local optimum. When the value of Cp is too big,
we will basically be sampling randomly and forget to pursue branches that seem promising.

The proper value of Cp is problem dependent. It usually requires some experimentation[8]. It
would be a separate branch of investigation to see how its best value can be determined automati-
cally.

4. Other improvements

The above selection of the Horner scheme would not be very spectacular if we would not apply
some more techniques, like common subexpression elimination. Such subexpression eliminations
come in varieties of which some take more time than others. Take for instance:

F(x,y,z) = y+ x(−3+5z+ x(y(2z+ y(z(−3+5z)))))

= y+ x(Z1 + x(y(2z+ y(zZ1)))) (4.1)

Z1 = −3+5z

This insertion saves us one multiplication and one addition.
In FORM [9] we have two types of such insertions:

• Common subexpressions.

• Greedy optimizations.

The second type is far more sophisticated than the first type, but also needs much more CPU type (it
uses basically a quadratic algorithm). When FORM works out a Horner scheme it always combines
this with at least the first type. The second type is optional.

Using such insertions, one might accumulate a large number of intermediate variables. This
is rather compiler unfriendly (if we want the compiler to also optimize). Hence FORM will try to
reuse variables.

We will show some examples of the various optimization levels first. Without MCTS the
Horner ordering is by ‘occurrence’ which means that the variables are ordered by the number
of occurrences in the formula. Actually the program tries two orderings: occurrence and anti-
occurrence.
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Compactifying formulas with FORM J. Vermaseren

O1 Occurrence+anti-occurrence followed by common subexpression elimination.

O2 Occurrence+anti-occurrence followed by common subexpression elimination. After that a
‘greedy’ optimization is used.

O3 MCTS with common subexpression elimination and greedy optimizations afterward.

Examples of the three basic levels of optimization:

Symbols x,y,z;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Format O1,stats=on;

Print;

.end

Z1_=y*z;

Z2_= - z + 2*y;

Z2_=x*Z2_;

Z3_=z^2;

Z1_=Z2_ - Z3_ + 2*Z1_;

Z1_=x*Z1_;

Z2_=y^2;

Z2_=2*Z3_ + Z2_;

Z2_=y*Z2_;

Z1_=Z2_ + Z1_;

F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 10M 5A : 15

Symbols x,y,z;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Format O2,stats=on;

Print;

.end

Z1_=z^2;

Z2_=2*y;

Z3_=z*Z2_;

Z2_= - z + Z2_;

Z2_=x*Z2_;

Z2_=Z2_ - Z1_ + Z3_;

Z2_=x*Z2_;

Z3_=y^2;

Z1_=2*Z1_ + Z3_;

Z1_=y*Z1_;

Z1_=Z1_ + Z2_;

F=3*Z1_;
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*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 0P 9M 5A : 14

Symbols x,y,z;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Format O3,stats=on;

Print;

.end

Z1_=x + z;

Z2_=2*y;

Z3_=Z2_ - x;

Z1_=z*Z3_*Z1_;

Z3_=y^3;

Z2_=x^2*Z2_;

Z1_=Z1_ + Z3_ + Z2_;

F=3*Z1_;

*** STATS: original 1P 16M 5A : 23

*** STATS: optimized 1P 6M 4A : 12

With simple expressions that have only a few variables the MCTS can use brute force and try
all possibilities. When there are more variables this is of course not possible and it tries a default
1000 times, unless the user specifies a different number.

The variables Z1_ etc. are so-called extra symbols, generated by FORM. It is possible to have
control over their representation as in

ExtraSymbols,array,w;

Symbols x,y,z;

Format FORTRAN;

Format nospaces;

Format O3,stats=on;

Local F = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

.sort

#optimize F

#write <f.f> " REAL*8 FUNCTION F(x,y,z)"

#write <f.f> " REAL*8 x,y,z,w(‘optimmaxvar_’)"

#write <f.f> " %O"

#write <f.f> " F=%e",F

#write <f.f> " RETURN\n END"

.end

This results in a file f.f with the contents

REAL*8 FUNCTION F(x,y,z)

REAL*8 x,y,z,w(3)
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Operations Time
Original 142711 0.00 sec
O1 20210 0.41 sec
O2 16398 5.37 sec
O3 11171 183.61 sec

Table 2: Results for a 12x12 resultant, using various optimization levels.

w(1)=x+z

w(2)=2*y

w(3)=w(2)-x

w(1)=z*w(3)*w(1)

w(3)=y**3

w(2)=x**2*w(2)

w(1)=w(1)+w(3)+w(2)

F=3*w(1)

RETURN

END

There are a few subtle points here that I cannot go into in such a short presentation. It is a good
idea to read the manual.

5. Results

After the above toy examples we go to some serious stuff.
The first example, taken from ref.[10], is a 12x12 determinant with 14 variables. The expres-

sion contains 11380 terms. After some tests we decided to put the MCTS constant to 0.1. The
results are shown in Tab. 2. In the literature[10] we found as best result 19148 operations obtained
in 22 seconds on a probably slightly faster computer.

For a somewhat simpler determinant (11x11 with 2562 terms) we have some results for other
systems, as shown in Tab. 3.

It should be mentioned that a Mathematica expert might do better than what we could get out
of it. Because the runs were all on different computers we have omitted the CPU time needed.

Of course we are mainly interested in the running time of the compiled code. This is shown in
Tab. 4.

FORM can also do simultaneous optimizations. If we take some objects outside brackets, only
the contents of the brackets are optimized, but in a combined optimization:

ExtraSymbols,array,w;

Symbols x,y,z;

Off Statistics;

Format FORTRAN;
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Operations Remarks
Original 29163
FORM O1 4968
FORM O2 3969
FORM O3 3015
Maple 8607
Maple(Tryhard) 6451 Takes a very long time
Mathematica 19093 Can probably be better?
HG+cse[10] 4905 Best in literature
Haggies[11] 7540

Table 3: Results for an 11x11 resultant, including other systems.

Format O0 Format O1 Format O2 Format O3
Operations 587880 71262 55685 36146
FORM time 0.12 1.66 65.43 2398

gcc -O0 time 29.02 6.33 5.64 3.36
run 119.66 13.61 12.24 7.52

gcc -O1 time 3018.6 295.96 199.47 80.82
run 24.30 6.88 6.12 3.58

gcc -O2 time 3104.4 247.60 163.79 65.21
run 21.09 7.00 6.22 3.93

gcc -O3 time 3125.4 276.77 179.24 71.02
run 21.02 6.95 6.19 3.93

Table 4: FORM run time, compilation times and the time to evaluate the compiled formula 105 times (run)
for a 13x13 determinant. All times are in seconds. The O3 option in FORM used Cp = 0.07 and 10× 400
tree expansions.

Format nospaces;

Format O3,stats=on;

Local F2 = 6*y*z^2+3*y^3-3*x*z^2+6*x*y*z-3*x^2*z+6*x^2*y;

Bracket y;

Print;

.end

w(1)=x**2

w(2)=x+z

w(2)=z*w(2)

w(2)=w(1)+w(2)

w(2)=6*w(2)

w(3)=-z*x

w(1)=-w(1)+w(3)

w(1)=3*z*w(1)

F2=y*w(2)+3*y**3+w(1)

8
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HEP(σ ) F13 F24

Variables 4+11 5+24 5+31
Expressions 35 56 56

Terms 5 717 105 114 836 010
Format O0 34 437 816 158 5 776 416
Format O1 5 764 72 013 400 044
Format O2 4 661 46 507 233 458
Format O3 3 387 42 912 181 871

Terms shifted 1 518 37 123 215 790
Format O0 9 141 286 162 1 520 117
Format O1 2 442 48 558 156 537
Format O2 2 013 39 003 116 442
Format O3 1 693 30 943 92 819

Table 5: Results for three physics formulas with simultaneous optimizations. The concept of shifting is
explained in the text.

*** STATS: original 0P 12M 3A : 15

*** STATS: optimized 0P 6M 3A : 9

This is very convenient in the GRACE[3] system where we have the Feynman parameters outside
the brackets and need to evaluate the coefficients.

For three outputs from the GRACE system we obtain the results in Tab.5.
Results for the physics formulas in the original and the shifted (explained below) versions. The

counting of the number of operations takes the brackets in the Feynman parameters into account.
The number of variables is the number of Feynman parameters plus the number of other variables.

The FORM optimization cannot use knowledge that we may have about the formulas. In a
sense it sees the formula as chaotic. In terms of AI, it does not have ‘domain specific knowledge’.
Of course, often the best optimizations are based on knowledge about the system, like knowing that
in some combination of variables the formula will be shorter. On the other hand, just introducing
lots of new variables makes the work of the MCTS much harder, because the tree becomes bigger.
As it turns out, the GRACE output can be greatly improved by making ‘shifts’ in variables. An
example would be that

w1 = 2*p1.p2

w2 = me^2

w1+w2 -> w1

or: instead of the original w1 we rewrite the formula in terms of the new w1, and very often the
number of terms in the expression becomes smaller.

We have written a set of FORM procedures for this and use them before we apply the output
optimizations. The results of this are the ‘shifted’ results in Tab. 5.

Hence, the best results are obtained when one first applies ‘domain specific knowledge’, and
after that the FORM optimizations. This is actually also much faster in CPU time, because the

9
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shorter formulas after the shifts have an enormous impact on the speed of the O2 and O3 optimiza-
tions.

In the worst example shown here (diagram 4320x22 in the reaction e−e+ → µ−νµud) we
started with 2427746 terms. The shifts took this down to 193893 terms after which the O3 option
of FORM reduced the number of operations from 1318539 to 119962. The shifting took 82000 sec
and the O3 optimization ‘only’ 16700 sec. On the original expressions the O2 optimization alone
cost already 70000 sec. and left more than 600000 operations.

As one can see, we are talking about enormous factors. And with outputs this size, there is
very little chance that the compiler can perform any level of optimizations. It took for O0 17.2 sec
and for O1 87.6 sec, but this is on an output that has been made very compiler friendly. On the
unoptimized formulas, using the compiler flag O1, it crashed after a long time.

6. Outlook

It should be clear that code simplification is not a closed book. Improvements are likely to
be found in the future, both in the field of domain specific knowledge and in the improvement of
chaotic code.

I also expect that both Maple and Mathematica will improve their performance.
The application of MCTS in physics should not be restricted to code optimization. It should

be considered in any field where one has to search though trees that are far too large for stepping
through completely. One such field is the combination of recursion relations in the calculation
of all Mellin moments in DIS as used in [12, 13]. Different orderings have completely different
properties. They may lead to unacceptably slow programs, or to spurious poles. The use of MCTS
to such systems is currently under study.

An interesting spinoff of the implementation of MCTS in the FORM optimization is that the
method of MCTS can be studied rather cleanly with it. Much better than in the games of Go or
chess. This may lead to improvements of the MCTS method as well.
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