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1. Introduction

Both ATLAS and CMS experiments at the Large Hadron Collider (LHC) observe events with
large numbers of hard QCD jets – results with up to ten jets have been published [2, 3] – and
such final states present a huge theoretical challenge for making reliable predictions in fixed order
perturbative QCD, where the next-to-leading order (NLO) corrections are taken into account. At
some stage, this fixed order approach is expected to break down in that the nth jet in an event will
be better described by a parton shower than a hard matrix element, as it will be relatively soft in
comparison with the total event (no matter how hard the jets are required to be). Whether this
number n is 10, 9, 8, 7,... etc. is an interesting question, and there will be large-statistics LHC data
at such jet multiplicities to explore this regime.

Although inclusive jet production is dominated by more gluonic sub-processes, there is a lot of
interesting multi-quark phenomenology at the LHC. Experimental groups are increasingly applying
jet substructure techniques [4, 5] in order to discriminate between light quark jets and gluon jets
[6, 7, 8] – these are used, for example in searches for supersymmetric particle cascade decays,
where most light jets are light-quark jets. The use of b-tagging techniques in many searches directly
increases the multi-quark content of the amplitudes needed to calculate cross-sections where they
are applied, and electroweak bosons in the final state require quark lines to be present in order
to couple to. New physics searches which look in high-pT tails of distributions get a increased
contribution from valence quark annihilation, with the result that the more multi-quark amplitudes
are numerically important.

In this talk, I will be focusing on properties of general QCD primitive amplitudes, in particular
those with multiple quark lines – this additional structure alters the group theory relations which
these amplitudes satisfy, with interesting results. These primitive amplitudes can be used in both
tree-level and, via unitarity based techniques, in one-loop calculations (see e.g. [9] for a review).
They increasingly become a more efficient way of calculating than a Feynman diagram expansion
as the number of legs, n, becomes very large, as it does for multi-jet processes – the use of recursion
relations (such as Berends-Giele recursion [10]) to obtain them directly avoids the quick growth in
complexity that accompanies the factorial increase with n of the number of contributing Feynman
diagrams.

Understanding the properties of these amplitudes allows for them to be used more efficiently
in phenomenological calculations of multi-jet processes. An understanding of a basis for these
primitives also allows for the construction of new colour decompositions for the 4q+ng and 6q+ng
cases which take a simple form – in particular, they involve the minimal number of primitive
amplitudes necessary.

2. Dyck words and multi-quark amplitudes

Consider amplitudes for gn−2k(q̄q)k scattering at tree-level, with k distinct flavours of quark
line. A useful way to define primitive amplitudes when there are quarks involved is to consider a
theory in which the quarks and antiquarks are charged under the adjoint representation of SU(3).
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A(1, 2, . . . , 5, . . . , 3, . . . , 6, . . . , 4, . . .) = 0

1
2

3

5

6

Figure 1: On the lhs is a quark line graph corresponding to the primitive above – it has crossed quark lines.
The rhs shows the unavoidable flavour-violating vertex in all contributions to this primitive.

Then the colour decomposition [11]

M tree = ∑
σ∈Sn−1

tr(λ 1
λ

σ1 . . .λ σn−1)A (1,σ1,σ2, . . . ,σn−1) , (2.1)

defines the purely kinematic primitive amplitudes A – however, being purely kinematic, they are
just the same as they are in normal QCD. These primitive amplitudes are gauge invariant, and
are planar and cyclically ordered. In the pure gluon case, only (n− 2)! of these amplitudes are
independent, as they satisfy the Kleiss-Kuijf (KK) relations [12],

A (1,α,2,β ) = (−1)nα ∑
σ∈OP(αT ,β )

A (1,2,σ ) (2.2)

where αT is the set alpha reversed, nα is the size of the set α , and OP(αT ,β ) stands for ordered
permutations of αT and β , which is the shuffle product of the two sets. In this way, two gluons
can be fixed in the cyclic ordering. Moving away from the pure gluon case, the KK relations
still apply, because they are purely group theory relations and follow from making such a colour
decomposition eq. 2.1 – as such, two labels can still be fixed. But now there are further relations
between the primitives A (1,2,σ ) which are induced by the quark line structure and which reduce
the number of independent to fewer than (n− 2)!. In the first place, some of the primitives with
distinct-flavour quark lines are zero. A useful way to see this is to draw a quark line diagram –
see the lhs of Fig. 1. The quark labels of the primitive (gluon labels are ignored in these diagrams)
are written around the edge of a circle representing the edge of the plane on which the primitive
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Figure 2: An example of how to draw a quark line topology for the Dyck word XXXYYY .

is defined, and lines are drawn in and out of the circle to connect quarks of equal flavour. In the
case shown in Fig. 1, these are the flavour pairs (q̄,q) labelled (1,2), (3,4), and (5,6) (all particles
are taken to be outgoing). A useful aspect of these diagrams is that if these quark lines cross, then
every contribution to the primitive will have to have a flavour-violating interaction, given that the
primitives are planar and cyclically ordered (see rhs of Fig. 1).

A way of counting the non-zero amplitudes of the form A (1,2,σ ) is by using Dyck words.
Dyck words are strings of r letter Xs and r letter Y s with the property that the number of Xs is
always greater than or equal to the number of Y s in any initial segment of the string. For example:

r = 1 : XY

r = 2 : XXYY, XY XY

r = 3 : XXXYYY, XXY XYY, XXYY XY, XY XXYY, XY XY XY

The number of Dyck words of length 2r is given by the Catalan number Cr = (2r)!/r!(r + 1)!.
They give all possible non-crossing topologies of quark line graph, if the Dyck word is written
out around the edge of a the circle, and moving left to right through the Dyck word, each Y is
connected with quark line to the most recently encountered, unconnected X (for an example, see
Fig. 2). All possible flavour choices of the quark lines must be considered, but only one choice of
the direction of the arrow on the line is independent (this follows through a group theory relation,
given in Ref. [1]). This gives rise to a counting for the pure quark case (where r = n/2−1) as

#(Dyck words) ·#(Flavour allocations)

=
(2r)!

r!(r+1)!
· r! =

(n−2)!
(n

2)!
. (2.3)

This generalises easily to the case with gn−2k(q̄q)k with k distinct flavour of quark lines – the
number of general QCD primitives is (n−2)!/k!.
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3. Two new simple colour decompositions

Colour decompositions have long been known for n gluons [11, 13] and 2q+ n gluons [14]
for general n. I will present new colour decompositions for the cases 4q+ ng and 6q+ ng. The
method is based around ‘unique Feynman diagrams’ (UFDs). The problem can be stated in terms
of a Feynman diagram expansion as follows:

Ai = ∑
j∈colour ordered

D j

M tree =
#basis

∑
i=1

C Amp
i Ai =

#FD

∑
k=1

CkDk . (3.1)

The first equation states that a primitive Ai can be expressed as a sum over all contributing purely
kinematic parts of the Feynman diagrams, Di, calculated using colour ordered Feynman rules [15].
The second equation expresses the full matrix element in two ways – firstly as a sum over a basis of
primitives with unknown colour coefficients Ci, and secondly as a sum over all Feynman diagrams
(i.e. Di multiplied by their usual colour factors from the Feynman rules). This is a system of
linear equations which can be solved to find the Ci. However, the system becomes trivial to solve
if one Dx is unique to an amplitude Ax – i.e. it is a UFD – because then it follows from eq. 3.1
that Cx = Cx. An understanding of the bases of primitive amplitudes allows one to maximise the
number of UFDs and this leads to simple expressions for the colour decompositions. Beyond the
cases shown, the same techniques render the linear system easily solvable.

3.1 Case 4q+ng

A useful choice of basis for this case is the set of primitives {A (1,n1,2,n2,3,n3,4)}, where 1
and 2 are antiquark and quark respectively of flavour f1, 3 and 4 are antiquark and quark of flavour
f2, and the ni are sets of gluon labels which are a splitting of some permutation of the n gluon
labels, that is, {n1,n2,n3}= n = {σ1,σ2, . . . ,σn}. The basis consists of all possible splittings, and
all possible permutations σ ∈ Sn. Each of these primitive amplitudes has a UFD which looks like

1

2 3

4

n1

n2

n3

That this is unique follows because flipping any of the legs at any of the vertices of the graph
produces a cyclic ordering of external particles which is outside the basis just specified. The colour
decomposition then follows by multiplying each of the basis primitives by the colour factor of the
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above diagram, evaluated using the normal Feynman rules:

(λ n1
1λ

n2
1 . . .λ n

|n1 |
1 λ

a)1
2[F

n1
2Fn2

2 . . .Fn
|n2 |
2 ]ab(λ

b
λ

n1
3λ

n2
3 . . .λ n

|n3 |
3 )3

4, (3.2)

where np
i is the pth element in ni, |ni| is the number of elements in the set ni, [Fa]bc = i f bac, and

where the indices 1,2,3,4 appearing are the colour indices of the (anti)quarks, and where there
is a summation over the indices a and b. We can use the shorthand notation (λ σ1 . . .λ σn)i

j ≡
(σ1 . . .σn)

i
j and [Fσ1 . . .Fσn ]ab ≡ [σ1 . . .σn]

a
b. Because the above diagrams are a UFD to each basis

primitives, the colour decomposition follows easily with eq. 3.2 simply multiplying each primitive:

M (4q+ng) = ∑
n∈Sn

∑
{n1,n2,n3}=n

(n1a)1
2[n2]

a
b(bn3)

3
4A (1,n1,2,n2,3,n3,4) , (3.3)

where the second summation is over all possible splittings.

3.2 Case 6q+ng

A useful choice of basis in this case is the set of primitives {A (1,n1,2,n2,3,n3,4,n4,5,n5,6)}
together with the primitives ( {A (1,n1,2,3,n2,5,n3,6,n4,4,n5)} + cyclic (1,2),(3,4),(5,6) ),
where the antiquark-quark pairs of equal flavour are labelled (1,2),(3,4),(5,6), and now the gluon
list n is split up into five different sets n1 to n5. The UFDs for these primitives are

1

2

3 4

5

6

n1

n2

n3

n4

n5

n1

n2

n3

n4

n5

12

3 4

5 6

where a difference now lies in that the comb representing the gluon set n3 is not attached to a quark
line in the above pictures – if it is, then flipping the legs on each of the vertices of this comb will
now create a different cyclic ordering of external particles which is in our chosen basis. There is a
small and trivial system of of linear equations to solve – it is simple because of the comb structure
of the gluons in this particular diagram, and the use of such little combs can be extended to higher
numbers of quarks, if desired, making inversion easy (although the number of terms would require
automation on a computer). The solution of this system modifies the n3 part of the usual Feynman
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rules associated with the colour factors of the above diagrams. The colour decomposition is

M (6q+ng) = ∑
n∈Sn

∑
{n1,n2,n3,n4,n5}=n

(n1a)1
2[n2]

a
bTg(n3,3,4)b

c[n4]
c
d(dn1)

5
6 A (1,n1,2,n2,3,n3,4,n4,5,n5,6)

+

[
(an1)

1
2(n2)

3
iTq(n3,5,6)i

j(n4b) j
4[n5]

b
a A (1,n1,2,3,n2,5,n3,6,n4,4,n5)

+cyclic(1,2)(3,4)(5,6)
]
, (3.4)

where the modifications to the Feynman rules for the n3 gluons gives rise to

Tg(s, q̄,q)a
b = ∑

s1,s2∈ ord. subs. s
(as1)

q̄
q [as2]

a
b , (3.5)

Tq(s, q̄,q)i
j = ∑

s1,s2∈ ord. subs. s
(as1)

q̄
q (as2)

i
j , (3.6)

where ‘s1,s2 ∈ ord. subs. s’ means: s1 is a subset of the set s with the ordering of the elements of s
preserved, and s2 are the remaining elements, also with ordering preserved.

Both of the new colour decompositions are directly in terms of primitive amplitudes, and only
rely on the minimum number needed to express the full amplitude.

4. Conclusion

In this talk I have shown that tree-level primitive amplitudes in QCD have an interesting math-
ematical structure, and outlined how to construct a basis around Dyck words for gn−2k(q̄q)k scat-
tering with k flavours of quark lines. The number of independent primitives is (n− 2)!/k!. The
understanding of relations between primitives and a minimal set should be useful in the organi-
sation and efficiency of multi-jet LHC phenomenological calculations. I presented two new all-n
colour decompositions for 4q+ ng and 6q+ ng, which take a simple form, and are directly given
in terms of a minimal set of primitives.

Note added: After this talk was presented, Ref. [16] appeared with an alternative approach to
colour decomposition that leads to all-n formulas, the results of which which take a different form
to the ones presented above.
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