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1. Introduction

In collinear factorization, only fractions of the, light-like, momenta of the colliding hadrons

in hadron collisions are transported into the hard process, and conventionally denoted by x. Ex-

tensions allowing for the initial-state partons to have non-vanishing transverse momentum compo-

nents go under the name of Transversal Momentum Dependent (TMD) factorization (see [1] and

references therein). Since the introduction of extra momentum degrees of freedom implies the in-

troduction of an extra energy scale, one may consider the kinematical region in which this scale is

much smaller than the total collision energy. This high-energy factorization [2,3] becomes relevant

when the transverse components are sizable compared to the longitudinal components carried into

the partonic process, i.e. for low values of x.

While high-energy factorization allows for kinematical effects in the hard matrix elements at

the lowest perturbative order that only appear at higher order in collinear factorization, it also raises

the question of how to define the matrix elements in a gauge invariant manner. One approach to

achieve this is by making use of effective actions that have been constructed to this end [4, 5].

Explicit expressions for matrix elements with off-shell initial-state partons have been derived using

these [6, 7]. Here, we present an alternative approach, which allows for the efficient numerical

calculation of helicity amplitudes with off-shell initial-state partons and arbitrary particles in the

final state. In particular, the approach only requires the introduction of a few extra Feynman rules

besides the usual ones for the calculation of on-shell amplitudes, and can therefor readily employ

well-known efficient numerical methods that largely work algorithmically and avoid the need for

the derivation of expressions [8–12].

2. Prescription

For any space-like momentum k, a light-like momentum ℓk and a transverse momentum k⊥
with ℓk ·k⊥ = 0 and k2⊥ = k2 can be found such that

kµ = ℓ
µ
k +k

µ
⊥ . (2.1)

For example in the frame in which k is along the z-axis, one has

kµ = E(1,0,0, 1
z
) , |z| < 1 , (2.2)

and one can take, with y=
√
1− z2 and for any angle φ,

ℓ
µ
k = E(1,ysinφ,ycosφ,z) , k

µ
⊥ = E(0,−ysinφ,−ycosφ, 1z − z) . (2.3)

The space-like momenta entering the hard scattering process within high-energy factorization are

restricted such that the light-like components are exactly proportional to the momenta ℓ1, ℓ2 of the

colliding hadrons, and are given by

k
µ
1 = x1ℓ

µ
1 +k

µ
1⊥ , k

µ
2 = x2ℓ

µ
2 +k

µ
2⊥ . (2.4)

The transverse momenta are transverse to both light-like momenta: k1,2⊥ ·ℓ1,2 = 0. The strategy

to arrive at gauge invariant amplitudes with off-shell initial-state momenta above is to embed the

2



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
3
6

Helicity amplitudes for high-energy scattering processes A. van Hameren

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

+ +

pA pA ′

pB pB ′

k1

k2

=

pA pA ′

pB pB ′

+ · · ·

Figure 1: The embedding of g∗g∗ → X into qA(pA)qB(pB)→ qA(pA ′)qB(pB ′)X.
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Figure 2: The embedding of u∗g→ X into qA(pA)g→ γA(pA ′)uX.

process under consideration into a larger on-shell process. In case the off-shell parton is a gluon,

the embedding is obtained by replacing the gluon by an extra auxiliary quark, and adding a quark

of the same type in the final state. This idea is depicted in Fig. 1 for the case of two off-shell

initial-state gluons. Since all external particles in the embedding are on-shell, the amplitude is

manifestly gauge invariant. The only requirement is to take into account the contribution of all

Feynman graphs, also the ones that do not contain gluon lines with momenta k1,k2 that can be

identified with the desired off-shell initial-state gluons. In case the off-shell parton is a quark, the

embedding requires the introduction of an auxiliary photon that interacts only via vertices involving

the desired off-shell quark, say a u-quark, and a companying auxiliary quark. Fig. 2 depicts the

situation for a single off-shell initial-state u-quark.

While the embeddings ensure gauge invariance, it is not a priori clear that they allow for the

desired kinematics of Eq. (2.4). For the embeddings, it implies that

p
µ
A−p

µ
A ′ = x1ℓ

µ
1 +k

µ
1⊥ , p

µ
B−p

µ
B ′ = x2ℓ

µ
2 +k

µ
2⊥ . (2.5)

Clearly, the momenta of the initial-state auxiliary quarks cannot be equal to ℓ1 and ℓ2 respectively.

In [13, 14], a compromise is proposed ensuring on-shellness of all external particles and ensuring

Eq. (2.5) at the same time. Furthermore, it immediately implies the natural values for the spinors

and polarization vectors of the auxiliary quarks and photons in terms of ℓ1 and ℓ2. The external

momenta of the auxiliary particles are fixed up to parameter denoted by Λ, which determines the

fraction of ℓ1 in pA and pA ′ and the fraction of ℓ2 in pB and pB ′. The compromise lies in the

fact that these momenta are not real and have imaginary components. Observing, however, that

gauge invariance and Eq. (2.5) hold for any value of Λ, also for Λ →∞, and that the imaginary

momentum components become negligible in that limit, the desired physical amplitude is obtained

as the coefficient of the highest power in Λ, namely Λ2.
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Eventually, the following prescription is derived in [13, 14] to calculate tree-level helicity

amplitudes with off-shell initial-state partons:

1. Consider the embedding of the process, in which initial state partons are replaced, and final-

state partons are added as follows:

initial state off-shell parton type new initial state extra final state

1 gluon A-quark A-quark

1 quark A-quark A-photon

1 anti-quark A-anti-quark A-photon

2 gluon B-quark B-quark

2 quark B-quark B-photon

2 anti-quark B-anti-quark B-photon

The A-photon only interacts with A-quarks and quarks of the type of the original initial state,

and the B-photon only interacts with B-quarks and quarks of the type of the original initial

state. The auxiliary quarks further interact with gluons. All of these vertices are the usual

ones.

2. Momentum flow is as if the new initial-state partons carry the momentum of the off-shell

partons, and the extra final-state particles carry vanishing momentum.

3. A-quark propagators are interpreted as iℓ/1/(2ℓ1 ·p) and are diagonal in color space,

B-quark propagators are interpreted as iℓ/2/(2ℓ2·p) and are also diagonal in color space.

4. To the external auxiliary particles of the A-line, spinors and polarization vectors are assigned

as follows:

initial auxiliary initial spinor final spinor final polarization vector

quark − |ℓ1] 〈ℓ1| 〈ℓ1|γµ|ℓ2]/
(
√
2[ℓ1|ℓ2]

)

quark + |ℓ1〉 [ℓ1| 〈ℓ2|γµ|ℓ1]/
(
√
2〈ℓ2|ℓ1〉

)

anti-quark + [ℓ1| 〈ℓ1|γµ|ℓ2]/
(√

2[ℓ1|ℓ2]
)

anti-quark − 〈ℓ1| 〈ℓ2|γµ|ℓ1]/
(√

2〈ℓ2|ℓ1〉
)

For the B-line, the role of ℓ1 and ℓ2 are interchanged.

5. Multiply the amplitude with x1

√

−k21/2/gS if off-shell parton 1 is a gluon,

and with

√

−x1k
2
1/2 if it is a (anti-)quark.

Multiply the amplitude with x2

√

−k22/2/gS if off-shell parton 2 is a gluon,

and with

√

−x2k
2
2/2 if it is a (anti-)quark.

For the rest, normal Feynman rules apply.

Regarding the momentum flow we remark that momentum components proportional to k1 and

k2 do not contribute in the eikonal propagators, and there is a freedom in the choice of the momenta

flowing through the eikonal lines.
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Regarding the helicities of the initial-state quarks in the embedding, the simplest way to formu-

late the rule for the squared amplitude is to sum over all helicities. For some helicity configurations

the resulting amplitudes will vanish or their squares will be identical, but within a purely numerical

Monte Carlo set-up, these kind of issues are usually easier dealt with using a numerical method.

It does mean, however, that the squared amplitudes receive an extra factor 1/2 for each off-shell

initial-state gluon.

In order to get the right power of the coupling constant, the vertices with auxiliary photons can

simply be taken with unit coupling. Gluons coupled to eikonal lines must carry a coupling constant

however, which is the reason for the overall factors 1/gS in rule 5. The rest of those factors are

necessary to get the correct collinear limit of the amplitude.

Stated as such, finally, the rules admit auxiliary photon propagators. These, however, must be

omitted.

3. Results

In [13,14] it has been shown that the prescription above leads to matrix elements equivalent to

those obtained with the effective action approach of [4,5]. In case of only one off-shell initial state

gluon, the method is also equivalent to [15].

For one off-shell initial-state parton, some analytic results have been obtained. For exam-

ple for the process /0 → g∗(p1+kT )g(p2)g(p3)g(p4) with p1 ·kT = 0, the color-ordered helicity

amplitudes are given by

A(2−,3−,4−) = 0 A(2+,3+,4+) = 0 (3.1)

A(2−,3−,4+) =
[3|k/T |1〉
|kT |[31]

[41]4

[12][23][34][41]
A(2+,3+,4−) =

〈1|k/T |3]
|kT |〈13〉

〈41〉4
〈12〉〈23〉〈34〉〈41〉 (3.2)

A(2+,3−,4−) =
[3|k/T |1〉
|kT |[31]

[12]4

[12][23][34][41]
A(2−,3+,4+) =

〈1|k/T |3]
|kT |〈13〉

〈12〉4
〈12〉〈23〉〈34〉〈41〉 (3.3)

A(2−,3+,4−) =
[3|k/T |1〉
|kT |[31]

[31]4

[12][23][34][41]
A(2+,3−,4+) =

〈1|k/T |3]
|kT |〈13〉

〈13〉4
〈12〉〈23〉〈34〉〈41〉 (3.4)

Since
∣

∣[3|k/T |1〉
∣

∣ =
∣

∣〈1|k/T |3]
∣

∣ =
∣

∣|kT |[31]
∣

∣ =
∣

∣|kT |〈13〉
∣

∣, we see that up to phase factors, the expres-

sions for the amplitudes in terms of the momenta p1,2,3,4 are very similar to the those for the process

in which all gluons are on-shell, despite the fact that these momenta here do not satisfy momentum

conservation.

The same can be seen for the process /0 → g(p1)g(p2)q(pq) q̄(pq̄+kT ), now with pq̄·kT = 0.

The color-ordered helicity amplitudes are given by

A(1+,2−,q+, q̄+) = −
[q̄|k/T |1〉
|kT |〈q̄1〉

〈q̄1〉3〈q1〉
〈q1〉〈12〉〈2q̄〉〈q̄q〉 (3.5)

A(1−,2+,q+, q̄+) = −
[q̄|k/T |2〉
|kT |〈q̄2〉

〈q̄2〉3〈q2〉
〈q1〉〈12〉〈2q̄〉〈q̄q〉 (3.6)
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A(1+,2−,q−, q̄−) =
〈q̄|k/T |1]
|kT |[q̄1]

[q̄1]3[q1]

[q1][12][2q̄][q̄q]
(3.7)

A(1−,2+,q−, q̄−) =
〈q̄|k/T |2]
|kT |[q̄2]

[q̄2]3[q2]

[q1][12][2q̄][q̄q]
(3.8)

A(1+,2+,q−, q̄−) = −|kT |
〈q̄q〉3

〈q1〉〈12〉〈2q̄〉〈q̄q〉 (3.9)

A(1−,2−,q+, q̄+) = |kT |
[q̄q]3

[q1][12][2q̄][q̄q]
(3.10)

In fact, here we see that the expression in terms of p1,2,q,q̄ for the sum over the first four helicity

comfigurations of the squared amplitudes is identical to the one for the process in which all quarks

are on-shell, again despite the fact that those momenta here do not satisfy momentum conservation.

The last two helicity configurations vanish for the on-shell process, and are proportional to |kT |

here.

The prescription has been implemented into a numerical program, and in [16] a phenomeno-

logical study has been performed requiring matrix elements with an off-shell gluon for the pro-

duction of three jets in the context of saturation effects in p-p and p-pB collisions. A numerical

program based on the approach of [15] has also been used in this study, and the results have been

cross-checked and confirmed. The study considers the kinematical situation in which one of the

partons entering the hard process carries a large fraction x of the initial hadron momentum, while

the other parton carries a small fraction. Then a hybrid factorization approach is applied, in which

large-x parton is treated within collinear factorization, and the low-x parton within high-energy

factorization. Then, different choices for the unintegrated PDFs from [17] for the low-x parton

are compared. One particular studied observable is the angular decorrelation φ13 when all jets are

in the forward region. It is the absolute value of the azimuthal angle between the hardest and the

softest jet. Fig. 3 shows the differential cross section for three choices of the unintegrated PDF,

namely the non-linear PDFs for the proton and lead from [17], and the proton PDF with linear

evolution [18]. We observe significant differences between the three scenarios (nonlinear proton,

nonlinear Pb and linear proton). The right plot shows the nuclear modification factor, i.e. the ratio

of the distributions of “proton nonlinear”/“Pb nonlinear”. The significant deviation from unity

indicates that the observable is sensitive to nonlinear effects.

4. Summary

We presented a prescription to calculate tree-level helicity amplitudes with off-shell initial-

state partons and arbitrary particles in the final state, which can be used in calculations within high-

energy factorization. The amplitudes are manifestly gauge invariant, and the prescription admits

efficient numerical approaches. It has be implemented into a numerical Monte Carlo program with

which studies of the production of tree jets in the forward region have been performed. More

studies with multiple-particle final states are expected to follow.
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“proton nonlinear”/“Pb nonlinear”. All bands represent the theoretical uncertainty due to scale variation,
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