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1. Introduction

In order to search for exotic new physics, or to accurately measure the properties of known

particles, one must extract the maximal amount of physical information from each event. One way

of achieving this goal is to assign each event a weight associated with a chosen theoretical hypoth-

esis. These event by event discriminants can offer improvements over more traditional analyses

that are based on a sequence of kinematic cuts. The Matrix Element Method (MEM) [1, 2, 3, 4, 5]

represents a class of kinematic discriminants in which a fixed order matrix element is used to as-

sign the theoretical weight. This is motivated by the fact that, by its very nature, the matrix element

contains the most theoretical information available. Historically, a drawback of the MEM was its

restriction to leading order matrix elements. Extensions beyond LO are necessary in order to ensure

the theoretical rigor of the method, but require careful consideration of the real and virtual phase

spaces and their associated singularities.

The aim of this work is to provide a mechanism of combining real and virtual phase spaces

such that event-by-event weights can be defined at NLO. The resulting algorithms can then be used

to construct a MEM accurate to NLO. We will define a method that provides unique NLO weights

for individual Born phase space points. Section 2 describes how the weights are constructed,

beginning from a LO topology. We present some simple validations of the method in section 3, and

discuss the application to the MEM in section 4. Finally in section 5 we present our conclusions.

2. Event-by-event weighting at NLO

2.1 Electroweak final states

We begin by presenting the simplest case in which the LO event contains no colored final state

particles. These electroweak final states were studied in detail in the context in ref. [6], which

presented a new implementation of the MEM at NLO using event-by-event NLO reweighting. In

order to produce well-defined and unique weights the MEM requires integration over the initial

state longitudinal degrees of freedom. This integration is a feature of the MEM method and not a

core requirement of the event-by-event reweighting. Therefore in the following section we simplify

the discussion by focussing solely on the reweighting of LO phase space points to NLO. The aim

of this section is to define an event-by-event K-factor such that the NLO calculation is rendered in

the following format,

PNLO(ΦB) = K(ΦB)PLO(ΦB). (2.1)

Here P(ΦB) represents a weight defined at a given order for an input Born phase space point,ΦB.

The Born phase space point is defined as follows, ΦB = (x1,x2,{Qn}), where {Qn} is a set of four

momenta which represent the n final state electroweak particles. The two initial partons are defined

in the lab frame and are fully specified by the fractions of the beam momentum, x1 and x2. Given

this phase space point it is trivial to define a weight using the LO matrix element.

PLO(ΦB) =
f (x1) f (x2)

2x1x2s
|M (0)(ΦB)|

2 (2.2)
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Upon integration over the full Born phase space one reproduces the LO cross section, i.e.

σLO =
∫

dx1 dx2

n

∏
i=1

d4 pi δ (+)(p2
i −m2

i ) δ (4)(∑
i

pi − p1 − p2) PLO(ΦB) (2.3)

We now wish to define the NLO corrections to this fully exclusive phase space point ΦB. This is

trivial to evaluate for the virtual corrections, since they share the same phase space

P̃V (ΦB) =
f (x1) f (x2)

2x1x2s

(

|M (0)(ΦB)|
2 +2Re

{

M
(0)

M
(1)†

(ΦB)

})

(2.4)

In this equation we introduced the notation P̃V , where the tilde signifies a weight that is divergent.

Weights without a tilde have been rendered finite, using a prescription that we will describe shortly.

Having defined our weights for the virtual corrections our remaining task is to evaluate the real

corrections which occupy the larger phase space ΦR.

Our aim is to define a map between the real and Born phase spaces such that the two cal-

culations can be combined together in a meaningful way. We thus choose to define the real phase

space as a map from the Born kinematics using the following definition ΦR(ΦB)= (xa,xb,{Qn}, pr)

where Qn corresponds to the electroweak particles associated with the original Born point. In this

formalism it is clear that all final state (electroweak) Lorentz invariant quantities are preserved be-

tween the Born and the real phase space points. It is also clear that it is impossible to maintain Qn

and momentum conservation whilst maintaining collisions along the z axis. Our setup requires the

former, so it is necessary to move the initial state away from the z-axis. For this reason, it is clear

that quantities that are not Lorentz invariant take different values in the two phase spaces. The lab

frame is restored by boosting the new phase space point back to a frame in which the beams are

longitudinal, and it is in this frame in which the parton fractions are defined and PDFs are eval-

uated. Fully inclusive NLO cross sections are obtained by integrating the emissions over the full

phase space. Exclusive NLO cross sections are defined by integrating up to a pT scale in which the

parton would be observed as a (lab frame) jet.

In this formalism it is natural to use a forward branching phase space generator [7] in which a

Born phase space point undergoes a branching in the initial state to produce the real radiation. The

corresponding element of phase space is,

d ΦIS
FBPS

=
1

(2π)3

Q2

sab

d tard trbd φ (2.5)

where a and b represent the new initial state momenta, and pr is the branched momenta. Using this

phase space we can define the following real weight

P̃R(ΦB) =
∫

d ΦIS
FBPS

(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M

(0)
R (ΦR(ΦB))|

2 (2.6)

where Jx represents the Jacobian from changing the initial state variables (x1,x2) to (xa,xb). In our

setup, where we integrate over x1 this factor is given by Jx = 1/(x1s). Note that, at this stage, our

weight is still divergent.

3
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2.1.1 Regulating the cross section

Since P̃R and P̃V are separately divergent they need to be regulated in order to define our

physical, dynamical K factors. In order to do this, our regulating procedure for the real radiation

must only involve the phase space point at which the virtual contribution is evaluated. This rules

out the possibility of using the Catani-Seymour dipole procedure [8], in which singularities are

cancelled by mapping an individual real phase space point to many Born configurations. However

a simple alternative is to use phase space slicing [9, 10]. This method introduces a small parameter

smin and one integrates the full real matrix element under the condition that all si j lie above this

threshold. Below this threshold one integrates simplified functions which reproduce the soft and

collinear singularities of the full matrix element. This procedure is accurate to O(smin), so is a

good approximation for sufficiently small smin. The simplified matrix elements are simple enough

to integrate analytically, producing counter terms which cancel the remaining poles in the virtual

amplitude. this regulating prescription we can define the weight as follows,

PNLO =
f (x1) f (x2)

2x1x2s

(

(1+Rv(smin))|M
(0)(ΦB)|

2 +2Re

{

M
(0)

M
(1)†

(ΦB)

})

+
∫

smin

d ΦIS
FBPS

(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M

(0)
R (ΦR(ΦB))|

2 +O(smin) (2.7)

In this equation Rv corresponds to the integrated real phase space and, since real radiation is subject

to the cutoff parameter, it depends on smin.

2.2 Final states with jets

We now wish to extend the results of the previous section to include Born final states which

contain jets. We define a jet using the following kinematic variables,

Ji = (pT,i,ηi,φi,mi) (2.8)

where pT , η , φ and m j represent, respectively, the transverse momentum, pseudo-rapidity, az-

imuthal angle and mass of the jet. At Born level a jet has a mass equal to its parent parton,

which in here we take to be zero. We can now define a Born phase space point as follows,

ΦB = (x1,x2,{Qi},{J j}) where the n-particle final state is determined by i electroweak particles

({Qi}) and j jets ({J j}). In order to assign a fixed order weight to this phase space point we

must define the function which maps the four vectors of m partons to n jets. This jet-function

C({pm},{Jn}) is crucial in order to define exclusive weights for events containing jets. At LO the

jet-function is particularly simple since each parton can be assigned to an individual jet

CLO
1|m({pm}|{Jm}) =

m

∏
i=1

δ (pT,i − pJ
T,i)δ (φi −φ J

i )δ (ηi −ηJ
i ) (2.9)

We note that the product of jet functions are themselves jet functions,

CLO({p1 . . . pi}|{J1 . . .Ji})C
LO({pi+1 . . . pm}|{Ji+1 . . .Jm}) =CLO({pm}|{Jm}) (2.10)

Using our jet function we can define our LO weight in the presence of jets

PLO(ΦB) =
f (x1) f (x2)

2x1x2s
|M (0)(ΦB)|

2CLO({pm}|{Jm}). (2.11)

4
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As was the case in the previous section it is trivial to include the virtual corrections at this phase

space point, since they share both the phase space and jet-functions. We will also proceed to

regulate our virtual amplitudes using the integrated approximate matrix element from the slicing

setup. Our virtual weight is thus defined as

PV =
f (x1) f (x2)

2x1x2s

(

(1+Rv(smin))|M
(0)(ΦB)|

2 +2Re

{

M
(0)

M
(1)†

(ΦB)

})

CLO({pm}|{Jm})

(2.12)

The jet-function for the real radiation maps an m+ 1 parton level event to m jets, in one of two

ways. Firstly the jets could be identified with individual partons, in the same manner as at LO.

Secondly, a new topology for the real phase space occurs when two partons are clustered together

to form a jet. The real jet-function is thus defined as follows,

C({p1 . . . pm+1}|{J1 . . .Jm}) =
m+1

∑
i=1

CLO({p1 . . . pi−1}|{J1 . . .Ji−1})CLO({pi+1 . . . pm+1}|{Ji+1 . . .Jm+1})

+
m

∑
i=1

m+1

∑
j=i+1

(

m+1

∏
α=1,α 6=i, j

δ (pT,α − pJ
T,α)δ (φα −φ J

α)δ (ηα −ηJ
α)

)

×δ (pT,i+ j − pJ
T,i)δ (φi+ j −φ J

i )δ (ηi+ j −ηJ
i )

=
m+1

∑
i=1

CIS(i)+
m

∑
i=1

m+1

∑
j=i+1

CFS(i, j) (2.13)

The first term in the above equation, in which individual partons are identified as final state jets,

is clearly very similar to the situation described in the previous section. We define this region as

CIS(i), where the i denotes the parton which is not associated with a jet. It is most natural in this

region to use the initial state forward brancher, with the branched parton being identified as particle

i. The second summation, over CFS(i, j) is a new feature at NLO, and represents configurations in

which two partons pi and p j cluster to form the jet Jα . The clustering of the two partons results in

the jet acquiring a non-zero mass. Since our jet definition freezes pT , η and φ it is clear that the

NLO jet is related to the LO jet by a longitudinal rescaling.

Using this setup it is straightforward to construct a final state forward branching phase space

generator. This phase space generator branches a Born jet to produce two massless partons. Pro-

vided they pass the clustering algorithm, they automatically cluster to reproduce the kinematic

properties of the Born jet, whilst having a non-zero mass. Specifically the phase space factorizes

as follows,

dΦR(xa,xb,{Qn},{pm+1})→ ∑
i j,α

dΦB(x1,x2,{Qn},{Jm−1})d ΦFS
FBPS(pi, p j,Jα) (2.14)

The momenta pi and p j are generated according to the final state forward branching measure,

d ΦFS
FBPS

(pi, p j,Jα) =
mT mL

JL · p jL

d p
(4)
i δ (+)(pi)

2 (2.15)

Given the vector pi, p j is constrained such that pi + p j has the same values of pT , η and φ as the

Born jet Jα . In order to ensure momentum conservation the beam undergoes a longitudinal Lorentz

5
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Figure 1: The dependence of the dynamical K factor on smin, for pp → e+e− (left) and pp → e+e−+jet

(right). In each calculation the K factor is calculated for a single phase space point.

transformation. The quantities mT and mL are the transverse and longitudinal mass of pi + p j. If

partons i and j are not selected to cluster under the jet algorithm then the event is rejected.

We can combine the results of this section to define a NLO weight for an exclusive final state

including jets,

PNLO =
f (x1) f (x2)

2x1x2s

(

(1+Rv(smin))|M
(0)(ΦB)|

2 +2Re

{

M
(0)

M
(1)†

(ΦB)

})

+
n jets+1

∑
i=1

∫

smin

d ΦIS
FBPS

(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M

(0)
R (ΦR(ΦB))|

2CIS(i)

+
n jets

∑
i=1

n jets+1

∑
j=i+1

∫

smin

d ΦFS
FBPS

(ΦB)Jx

f (xa) f (xb)

2xaxbs
|M

(0)
R (ΦR(ΦB))|

2CFS(i, j)+O(smin) (2.16)

A dynamical K-factor is then given by the ratio PNLO/PLO, which is defined point-by-point in

the Born phase space.

3. Validation

We validate our method by investigating the dependence of the NLO cross section on the reg-

ulating parameter smin, at a fixed Born phase space point. We consider both the simplest case of an

electroweak final state, pp → e+e−, as well as the extension to include a jet, pp → e+e−+jet. Our

results, for sample phase space points, are shown in Fig. 1. The cancellation of logarithms between

the virtual and real contributions is apparent in both cases, resulting in a dynamical K factor that

shows no significant dependence on smin. We have also checked that, if the full differential infor-

mation regarding PNLO is maintained, we reproduce the results of a traditional NLO calculation

when integrating over the entire Born phase space.

4. The Matrix Element Method at NLO

An obvious application of the method described above is the extension of the MEM to NLO

6
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accuracy. In this section we provide a brief introduction to this application. The MEM proceeds by

associating an input event with a weight arising from the matrix element. For simplicity, consider

the production of a Z boson in a hadronic collision. Since such events in data, or those obtained

from Monte Carlo event simulations, typically possess significant hadronic recoil, one must map

this onto a LO partonic configuration in which transverse momentum is balanced. An appropriate

map is obtained by boosting the event such that the transverse momentum of the LO final state

balances. Since there are multiple longitudinally-connected Lorentz transformations that result

in the same transverse final state, this boost is not unique. One must therefore integrate over all

longitudinally equivalent, boosts. This is accomplished by integrating over the parton fractions xi,

under the constraint that the invariant mass of the final state is preserved. The MEM weight is then

defined by,

PMEM(φ̃B) =
1

σ

∫

dx1dφB P(φB)W (φB, φ̃B) (4.1)

In the above equation the input event (φ̃B) is related to a parton level event (φB) by the transfer

functions W . The Lorentz transformation is then applied to the parton level event φB, and the

longitudinal integration occurs for each generated phase space point. The detailed discussion of

the transfer functions, W is beyond the scope of this work. Here we merely note that they are

rather simple for well-identified final state leptons, and much more complicated for final state jets.

Using the results of the section 2 it is fairly straightforward to extend the MEM to NLO, by simply

using the appropriately-defined P and σ . It is also possible for the transfer functions W to change

when moving from LO to NLO. Such modifications can be estimated in data by comparing the use

of parton showers that include both LO and NLO effects to fit the transfer functions. Ideally the

latter option would be used for a consistent picture at NLO. Using these weights one can construct

event-by-event kinematic discriminants to search for events corresponding to particular choices of

the matrix element, for instance corresponding to signal and background processes.

In ref. [11] the MEM@LO and MEM@NLO were used to study the decay of a Higgs boson

into the Zγ final state. This rare decay of the Higgs boson is incredibly difficult to search for

experimentally due to the combination of low rate and kinematic similarities between the signal and

backgrounds. This search is a therefore a prime candidate to benefit from the additional power of

MEM discriminants. Indeed, imposing a simple MEM cut improves a traditional mℓℓγ fit by around

a factor of two. The MEM@NLO was found to perform around 16% better than the equivalent

MEM@LO algorithm. Since this channel will require thousands of inverse femtobarns of data,

such an improvement represents a significant benefit to the analysis. More recently the MEM has

been used at LO to investigate the potential of finding off-shell Higgs events as a means to constrain

the Higgs width at the LHC [12]. In this case the use of a MEM discriminant could improve limits

obtained using a simple cut-and-count approach by a factor of 1.5 or more. Given the importance

of the Higgs width, and the inherent difficulty in measuring this in a hadronic environment, this

again demonstrates the power of the MEM.

5. Conclusions

We have presented a method which reweights Born phase space points to next-to-leading or-

der. The method relies on the generation of real phase configurations that are obtained by simple

7
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maps from an underlying Born topology. Each initial or final state parton branches, and the full

real radiation phase space is recovered by the integration over all branchings. If this branching is

inclusive then one naturally recovers the inclusive cross section. Alternatively, if the emission is

curtailed at some scale, one reproduces the exclusive NLO cross section. Using our setup one can

reproduce traditional NLO cross sections and distributions, by keeping all of the kinematic infor-

mation regarding the branched final state. On the other hand, if one integrates out the branching,

one can effectively define a dynamical K factor for each event in the Born phase space. Since this

integration requires mapping real emissions back to a LO topology, it is most natural to impose a

scale at which the emission becomes too hard and is associated with an observed jet. By integrat-

ing out the emissions one obtains a procedure for weighting individual Born events in a way that

accounts for corrections from higher orders in perturbation theory.
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