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1. Introduction

I will discuss soft-gluon exponentiation and the recent progress towards determining soft sin-
gularities in multi-leg scattering amplitudes at three loops. The motivation of this research pro-
gramme is to extend our knowledge of long-distance singularities, which is a key to precision
cross-section calculations. Progress on this front will feed into creating effective subtraction meth-
ods for combining real and virtual corrections, and lead to more precise resummation of logarithms
in a broad range of observables. Beyond these applications there is also a strong theoretical motiva-
tion to further our understanding of the mathematical structure of scattering amplitudes in general.
Here infrared singularities have a special role because their structure is vastly simpler than the finite
parts of the amplitudes, so real progress towards multi-loop and even all-order results can indeed
be made. It should also be noted that the long-distance singularity structure is rather similar for
all non-Abelian gauge theories. Specifically the matter contents of the theory will not play any
important role in our discussion.

In this talk I will be specifically interested in multi-leg processes, and I will not make any
assumptions about their spins or their colours - in particular no large-Nc approximation will be
taken. The strategy I take here in studying the infrared limit of scattering amplitudes is to compute
the renormalization of a product of semi-infinite Wilson lines, all meeting at a point,

S = exp [w] =
〈
Φβ1 ⊗ Φβ2 ⊗ . . .ΦβL

〉
. (1.1)

Each Wilson line is defined by

Φ
(l)
βl
≡ P exp

[
igs

∫
∞

0
dtβl ·A(tβl)

]
, (1.2)

where we suppressed the colour indices and explicitly displayed the dependence on the 4-velocity βl .
Here P denotes path-ordering of the colour generators along the Wilson line. The L Wilson lines
originate in the eikonal approximation to the corresponding L highly energetic coloured particles
participating in the scattering process; these dictate the directions and colour charges of the lines.
In order to avoid collinear singularities (and preserve multiplicative renormalizability, see below)
we will use massive, or non-lightlike Wilson lines, where the 4-velocities obey β 2

l 6= 0. When
considering massless partons we will be able to take the limit β 2

l → 0 at the end and combine the
result with the relevant jet functions (see e.g. Refs. [1–4]). S with timelike Wilson lines, β 2

l > 0, is
directly relevant for heavy quarks.

In dimensional regularization S presents a rather remarkable relation between the ultraviolet
and the infrared singularity structure [5] owing to the fact that scaleless integrals vanish iden-
tically. Instead of computing infrared singularities we will compute the renormalization of the
vertex formed by the product of Wilson lines in eq. (1.1). This operator renormalizes multiplica-
tively [6–9]:

Sren.(εIR,µ) = SUV+IR Z(εUV,µ). (1.3)

In the absence of any cutoff all radiative corrections vanish and SUV+IR = 1, which implies

Sren.(εIR,µ) = Z(εUV,µ). (1.4)

2



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
4
3

Progress on soft gluon exponentiation and long-distance singularities Einan Gardi

Figure 1: A Feynman diagram contributing to an amplitude involving five hard external partons and the
corresponding product of five Wilson lines extending from the hard interaction point, where they all meet,
to infinity. The soft gluons are the same in both.

The derivative of the Z factor is the so-called soft anomalous dimension: dZ/d ln µ = −ZΓ. Γ is
finite and it carries all the necessary information concerning soft singularities. Z can be solved for
and be expressed as an ordered exponential of an integral of Γ over the scale (in a more explicit
form it is given by eq. (3.4) below). We thus see that exponentiation largely dictates the structure of
long-distance singularities of amplitudes, making it a very useful property, see e.g. Refs. [10, 11].

The remainder of the talk comprises of two parts. The first is a brief introduction to the di-
agrammatic picture of non-Abelian exponentiation. The second deals with calculations of a class
of diagrams contributing to Γ, which we now understand well, namely those involving gluon ex-
changes between the Wilson lines, without any three or four gluon vertices. This calculation is
greatly simplified thanks to the workings of non-Abelian exponentiation.

2. The non-Abelian exponentiation theorem

Let us now discuss soft gluon exponentiation. The starting point is the observation that when
considering a Wilson-line correlator, as in eq. (1.1), the exponent w takes a simple form. Conse-
quently it is useful to compute it directly. This was first understood in the context of the Abelian
theory in the 1960’s [12]; in this case the exponent w only receives contributions from connected
graphs (throughout our discussion ‘connected’ should be understood as referring to the graph af-
ter removing the Wilson lines). All non-connected diagrams are reproduced upon expanding the
exponential. This is illustrated in figure 2.

The next step was taken in the 1980’s [13–15], when the non-Abelian exponentiation theorem
was first formulated. This was done in the context of a Wilson loop, or two Wilson lines, corre-
sponding to a colour singlet form factor (for a review see [16]). The generalization to a product of
more than two Wilson lines, as relevant for QCD hard scattering, was only made over the last three
years [17–23].

2.1 Exponentiation for two Wilson lines

Let me first describe the part of the picture that was known until 2010, namely considering
two Wilson lines. Here there is a simple topological criterion for determining which diagrams con-
tribute to the exponent and which do not. To make this separation one defines a reducible diagram
as one whose colour factor can be written as the product of the colour factors of its subdiagrams
(an example is provided in figure 3). In this language the non-Abelian exponentiation theorem
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S = exp{ + + + . . .}

Figure 2: Exponentiation for a product of two Wilson-line rays in the Abelian theory. Top: the first few
connected graphs which build up the exponent. Bottom: examples of non-connected diagrams that are
generated by expanding the exponential.

of [13–15] states that the exponent only receives contributions from irreducible diagrams, while
the reducible ones are fully reproduced by exponentiation of lower-order diagrams corresponding
to their subdiagrams. Furthermore, the colour factors of the diagrams that enter the exponent (ECF,
Exponentiated Colour Factors) are different from the ordinary colour factors of these diagrams,
and are given by the “connected” or “non-Abelian” parts of the latter. For example, the ECF of
diagram (b) in figure 3 is1 −1

2CRCA, which is the non-Abelian part of its ordinary colour factor,
CR(CR− 1

2CA). Beyond the colour structure aspect, reducible diagrams also have the property that

(a) (b) (c)

Figure 3: Examples of reducible (c), and irreducible (a and b), two-loop diagrams in the non-Abelian two-
line case. In (c) the inner gluon can be shrunk to the cusp without affecting the outer one, resulting in a
leading 1/ε2 ultraviolet singularity; this may be contrasted with diagrams (a) and (b) which have a single
ultraviolet pole. This illustrates the connection between a reducible colour structure and the presence of
subdivergences in the renormalization of the cusp.

they have subdivergences associated with the cusp (this is illustrated in the example of figure 3);
1Here CR is the quadratic Casimir in the representation R where CA corresponds to the Adjoint representation. R is

the representation of the two Wilson lines in figure 3.
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such subdivergences never appear in irreducible diagrams. The absence of subdivergences in dia-
grams that contribute to the exponent is essential for the multiplicatively renormalizability of the
cusp [6–9]. This is related to the fact that upon solving the renormalization group equation for Z
in terms of Γ for the two-line case one obtains an integral over the scale, which produces2 a single
1/ε pole. The connection between the irreducibility of the colour factor and the absence of subdi-
vergences in the exponent, which in turn relates to the renormalization properties of the operator,
will be central to understanding the generalization to the multi-leg case.

2.2 Exponentiation in the multi-line case and web mixing matrices

(1a) (1b)

(2A) (2B)

Figure 4: One and two-loop gluon-exchange diagrams contributing to the renormalization of the product
of three or more Wilson lines. Diagrams (1a) and (1b) correspond to the subdiagrams of (2A) and (2B);
clearly the latter are reducible diagrams. Nevertheless, as shown in the text these two-loop diagrams are
not fully reproduced by exponentiation of the one-loop ones. Rather, one must include the antisymmetric
combination of the two colour factors times the antisymmetric combination of the two kinematic integrals
in the exponent.

As soon as we start thinking several Wilson lines we realise that the non-Abelian exponentia-
tion picture described above breaks down: here reducible diagrams do contribute to the exponent.
To see this consider the example of figure 4. Let us write the contribution of each diagram D as an
explicit colour factor CD times a kinematic-dependent integral FD. The two one-loop diagrams of
figure 4 yield:

D(1a)+D(1b) = F(1a)T1 ·T2 +F(1b)T2 ·T3 , (2.1)

where Ti is a colour generator on line i, and T1 ·T2 = T (a)
1 T (a)

2 , under summation convention over a.

2Higher poles in ε are generated by running coupling effects, but these are distinct from renormalization of the cusp.
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The result of exponentiating these one-loop graphs, expanded to two-loop order, yields:

1
2
[
D(1a)+D(1b)

]2
=

1
2
[
D(1a)D(1b)+D(1b)D(1a)+ · · ·

]
=

1
2
F(1a)F(1b) T(a)

1

[
T(a)

2 T(b)
2 +T(b)

2 T(a)
2

]
T(b)

3 + · · ·

=
1
2

[
F(2a)+F(2b)

] [
C(2a)+C(2b)

]
+ · · ·

(2.2)

which is different from the sum of the two two-loop diagrams:

D(2a)+D2b = F(2a)C(2a)+F(2b)C(2b) . (2.3)

We see that only the symmetric combination of colour factors of the diagrams is reproduced by
expanding the exponential, implying that we need to incorporate in the exponent the anti-symmetric
contribution,

1
2

[
F(2a)−F(2b)

]
︸ ︷︷ ︸

O(1/ε)

[
C(2a)−C(2b)

]
︸ ︷︷ ︸

i f abcT(a)
1 T(b)

3 T(c)
2

(2.4)

explicitly. This exercise shows that reducible diagrams do contribute to the exponent in the multi-
leg case, and on the face of it the non-Abelian exponentiation theorem does not generalise. The
work of Ref. [17–23] shows that it does in fact generalise but in a rather non-trivial way. A few hints
can already be drawn from the simple example above: first, it is convenient to consider together sets
of diagrams which are related by permutation of the order of gluon attachments to the Wilson lines;
we refer to the entire set as a single web. Second, the web as a whole yields a non-Abelian colour
factor (in the present case we got i f abcT(a)

1 T(b)
3 T(c)

2 , which is the same as the colour factor of a three
gluon vertex connecting to the three lines). Third, in the combination of integrals accompanying
this colour factor in the exponent certain subdivergences conspire to cancel: while F(2a) and F(2b)

each have a double pole, their difference, which enters the exponent via (2.4), has a single pole.
All these properties can be formulated and proven in full generality [17–23]. Using a func-

tional integral formalism [17,24] employing the replica trick of statistical physics [25] (see below)
it was shown in ref. [17] that the exponent can be written as a sum of webs Wi, where each web
is a set {D}i that comprises of all diagrams D which are related to each other by permutations of
the order of gluon emissions along each of the Wilson lines; a given diagram D contributes with an
ECF which is itself a linear combination of the ordinary colour factors of diagrams in the set. The
resulting structure is then:

S = exp

[
∑

i
Wi

]
, Wi = ∑

{D}i

FD C̃D = ∑
D

FD ∑
D′

RDD′ CD′ = F T RC (2.5)

where R is a matrix whose entries are rational numbers. We refer to R as the web mixing matrix.
The replica trick led to a general algorithm (and a combinatorial formula) to compute the matrix R
for a general web. This matrix determines the way in which colour and kinematic information is
entangled in the exponent. It has some remarkable properties:

6
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1. R is idempotent, namely R2 = R, which implies that it acts as a projection operator on the
space of colour factors or kinematic integrals of individual diagrams. The idempotence prop-
erty was proven in [19] using the replica trick formalism. Being idempotent, R is diagonal-
isable, and its eigenvalues are just zeros and ones. Each left eigenvector of unit eigenvalue
corresponds to a particular linear combination of colour factors that enters the exponent with
a corresponding combination of kinematic integrals. Formulae for the number of such inde-
pendent colour factors have been derived in refs. [21, 22].

2. R admits a zero-sum-row property: ∑D′ RDD′ = 0 for all D. This corresponds to the fact that
the fully symmetric colour factor is projected out. This property was proven in [19] using
combinatorial methods.

3. R admits a weighted zero-sum column property: ∑D s(D)RDD′ = 0, where s(D) is a symmetry
factor that counts the number of ways of shrinking subdiagrams to the origin in maximally
reducible diagrams. This property has not yet been proven in general, but it relates to the
cancellation of the leading subdivergences in the exponent.

The mixing matrix has a rich combinatorial structure which represents detailed properties of soft-
gluon exponentiation. Of special interest is the connection with the renormalizability of the Wilson-
line vertex: in each web, diagrams are combined such that the leading subdivergences cancel, while
all remaining multiple poles match the structure of commutators of lower-order webs [18,20]. The
fact that webs renormalize independently will be crucial for computing them.

2.3 The non-Abelian exponentiation theorem

The next step was taken in ref. [23] where it was shown in general that all the colour factors
appearing in the exponent correspond to connected graphs. This completes the generalization of
the non-Abelian exponentiation theorem to the multi-line case. A three-loop example is shown in
figure 5. The 1-2-2-1 web comprises four diagrams corresponding to all possible orderings of the

(a) (b) (c) (d)

=⇒

Figure 5: Left: The four diagrams (a) through (d) (where four Wilson lines are connected by three gluons)
comprising the 1-2-2-1 web. Right: a graph representing the connected colour factor generated by this web.

7



P
o
S
(
R
A
D
C
O
R
 
2
0
1
3
)
0
4
3

Progress on soft gluon exponentiation and long-distance singularities Einan Gardi

gluon attachments along the lines. The contribution of this web to the exponent is

W1−2−2−1 =


F(a)

F(b)

F(c)

F(d)


T

1
6


1 −1 −1 1
−2 2 2 −2
−2 2 2 −2

1 −1 −1 1




C(a)

C(b)

C(c)

C(d)


=

1
6

(
F(a)−2F(b)−2F(c)+F(d)

)(
C(a)−C(b)−C(c)+C(d)

)
(2.6)

where the combination of colour factors is C(a)−C(b)−C(c)+C(d) = f abe f cdeT a
1 T b

2 T c
3 T d

4 , corre-
sponding to the connected diagram on the r.h.s of figure 5.

Having seen a couple of examples of how connected colour factors emerge (many more can be
found in [23]) let us briefly summarise the main ideas behind the proof of the general theorem [23].
To this end let us first recall the replica trick formalism of [17]. The generating functional for all
radiative corrections to S in eq. (1.1), involving L Wilson lines, is:

Z =
∫

[DAµ ] eiS[Aµ ]
[
Φ

(1)⊗Φ
(2)⊗·· ·⊗Φ

(L)
]

(2.7)

where a functional integral is taken over the gauge field Aµ , the action is S[Aµ ], and the Wilson lines
are defined in eq. (1.2) for l = 1..L. To obtain the Feynman rules corresponding to the exponent w
in eq. (1.1) we need to consider lnZ . This is achieved using the replica trick as follows: at the first
step one replicates the theory N times by introducing N non-interacting replicas of the theory, each
of which is sourced by each of the Wilson lines:

Z N =
∫ [

DA1
µ

]
. . .
[
DAN

µ

]
ei∑n S[An

µ ]

[
(Φ

(1)
1 Φ

(1)
2 . . .Φ

(1)
N )⊗·· ·⊗ (Φ

(L)
1 Φ

(L)
2 . . .Φ

(L)
N )

]
(2.8)

Diagrams in the replicated theory Z N would have modified colour factors which depend on N as
we explain below. At the next step one expands in powers of N,

Z N = 1+N lnZ +O(N2) . (2.9)

Expanding the replicated-theory results for a given diagram in powers of N and identifying the
coefficient of N1 yields the contribution of the diagram to lnZ , namely to the exponent w.

Let us now explain how colour factors in the replicated theory become N-dependent. Consider
one of the Wilson lines in the replicated generating functional (2.8), which by definition takes the
form:[

Φ1
(l)

Φ2
(l) . . .ΦN

(l)
]

a1b1
=

(
P exp

[
igs

∫
dt A(l)

1 (t)
])

a1c2

. . .

(
P exp

[
igs

∫
dt A(l)

N (t)
])

cNb1

,

(2.10)
where we explicitly displayed the replica and colour indices and used a short-hand notation for the
gauge field of replica n along the Wilson line l: A(l)

n (t) = β
µ

l An
µ(tβl). Note that the order of the

colour generators (belonging to different replicas) in each diagram generated must be preserved;
this can be formally represented by a replica-ordering operator R such that (2.10) takes the form:

RP exp

[
igs

N

∑
n=1

∫
dtA(l)

n (t)

]
. (2.11)

8
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Here, upon expanding the exponential, colour generators associated with the gauge field of a given
replica are ordered according to the relative position of the field along the Wilson line (path or-
dered), while those belonging to different replicas are ordered according to their replica numbers
(replica ordered). At this point it is already clear that the colour factors in the replicated theory are
modified through the operation of R, making them N-dependent. This formulation was the basis
of a Maple code [17] which allows to compute the web mixing matrices for any web.

Equivalently, eq. (2.11) can be converted into an ordinary exponential upon repeated use of
the Baker-Campbell-Hausdorff formula to implement the path- and replica-orderings:

exp

[
(igs)

∫
∞

0
ds∑

i
Ai(s)+

1
2
(igs)

2
∫

∞

0
dsdt

{
θ(s > t)∑

i
[Ai(s),Ai(t)]+∑

i< j
[Ai(t),A j(s)]

}
+ . . .

]
.

(2.12)

In this formulation correlated emission of n gluons from the Wilson line may be realised though
an effective vertex Vn involving a nested commutator of n gauge fields. This vertex is non-local in
configuration space (e.g. the commutator of two fields in (2.12) involves the two positions t and
s) but importantly its colour factor, originating from a fully-nested commutator, corresponds to a
fully connected n-gluon emission graph such as those shown in figure 6. Having established the

],T a[ ]bT , cT[ ],T a[ ]bT , cT[ ,T
d[ ],[ ]bTT a

a b

a
b c

a
b c d

Figure 6: Examples of colour factors arising in the exponent owing to the (repeated) application of the
Baker-Campbell-Hausdorff formula to implement path ordering of fields belonging to the same replica and
replica ordering otherwise. Connected graphs are obtained using the colour algebra.

effective Feynman rules, the proof in [23] proceeded by using the usual replica trick argument: out
of all the graphs that can be formed using the effective vertices Vn on the L Wilson lines, only those
which are fully connected (such as the one on figure 7 (a)) have a linear dependence on the number
of replicas N. In particular graphs with two separate subgraphs, as in figure 7 (b), scale at least
as N2, since the replicas can be assigned independently in the two subgraphs. Consequently only
connected graphs made of the vertices Vn contribute to the lnZ theory. Given that the colour factor
of each vertex is itself connected, all graphs in the lnZ theory – namely in the exponent – have
connected colour factors. This completes our review of the non-Abelian exponentiation theorem,
and we are ready to consider the calculation of corresponding integrals in the next section.

3. From webs to polylogs

The soft anomalous dimension

Γ =−Z−1 dZ
d ln µ

= Γ
(1)

αs +Γ
(2)

α
2
s +Γ

(3)
α

3
s + . . . (3.1)

9
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(a) (b)

v3v3
v3 v2

v2v2

+ +

+

Figure 7: Examples of graphs made out of the effective vertices Vn. The + sign encircling vertices on
the same Wilson line is there to indicate that a symmetric combination must be taken (no path-ordering is
required).

encodes the long-distance singularities of any scattering amplitude. The one-loop correction Γ(1)

correlates pairs of Wilson lines only (figure 8), and is therefore determined in terms of the angle-
dependent cusp anomalous dimension3. The complete two-loop result Γ(2) correlating three Wilson

i j

i j

Figure 8: One loop web, where the gluon is emitted between Wilson lines i and j .

lines (the relevant webs are shown in figure 9) has been known for a few years now for both the
massless and the massive cases [1, 2, 4, 26–35]. In the massless case the three-line correlation

a b

Figure 9: Two-loop graphs connecting three Wilson lines. Left: The two diagrams, called respectively (a)
and (b), form together a 1-2-1 web, which we denote by w(2)

121. Right: A connected web correlating the three
Wilson lines. These two webs have the same colour factor.

vanishes and the result for the soft anomalous dimension reduces into a sum over colour dipoles.

3The cusp anomalous dimension itself has been known to two loops for many years [5].

10
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Indeed, it has been shown that in the massless case factorization and rescaling symmetry lead to
all-order constraints, suggesting a simple ansatz for the anomalous dimension in the form of a sum
over dipoles [36–40]. The first possible correction to this dipole formula may appear at three-loop
order from diagrams involving four Wilson lines. Despite recent progress [3, 36–47], it seems
that general considerations fall short of excluding or fixing these corrections4; further input from
explicit calculations is needed. This provides extra motivation to compute Γ at three loops, and
specifically to determine its component involving four Wilson lines Γ

(3)
4 . The relevant webs are

those having colour factors of the form f abe f cdeT a
1 T b

2 T c
3 T d

4 and permutations. There are several
webs that contribute: the most obvious ones are the connected three-loop webs of figure 10, but
there are others, which are comprised of two connected pieces (figure 11) and ones that involve
three individual gluon exchanges: the 1-2-2-1 web of figure 5 and the 1-1-1-3 web of figure 12.

Figure 10: Connected three-loop diagrams with 3- or 4-gluon vertices spanning four Wilson lines.

A B1

4

2

3

Figure 11: The 1-1-1-2 web. Each of the two diagrams in this web (A and B) contains two connected
subdiagrams, one of which has a three-gluon vertex.

While complete four-leg three-loop computations of scattering amplitudes are beyond the
state-of-the art, determining the singularities may be possible. The techniques needed in order
to evaluate the integrals for connected webs [48] as in figure 10 are rather different from those
needed to evaluate the contributions of gluon exchange diagrams such as those of figures 5 and 12.
In the latter case a difficulty arises due to the fact that the overall degree of divergence is high,
with some of the diagrams having O(1/ε3) singularities5, while determining the anomalous di-
mension requires to compute the O(1/ε) pole, as we shall see below. Here the direct computation

4A very interesting argument has been formulated recently [47] based on the Regge limit, indicating that the dipole
formula should be violated at four loops.

5Note that in a direct lightlike calculation there are additional collinear singularities and the leading pole is O(1/ε6).
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1

2 3

4

Figure 12: The six 3-loop diagrams forming the 1-1-1-3 web in which four eikonal lines are linked by three
gluon exchanges.

of the exponent in terms of webs, as described in section 2, becomes crucial. This will be demon-
strated in what follows, where we review the recent progress in evaluating multiple-gluon-exchange
webs [49].

3.1 Multiplicative renormalizability and the soft anomalous dimension

Before discussing the web integrals themselves, let us recall how the soft anomalous dimension
is computed in terms of webs. Γ is defined in (3.1) as the logarithmic derivative of the renormal-
ization factor Z of the product of Wilson lines S = exp[w], where Z is defined so as to absorb the
ultraviolet singularities of S such that

exp[w]Z = O(ε0) , (3.2)

implementing multiplicative renormalizability. To determine the ultraviolet singularities of w in
dimensional regularization we must introduce another infrared regulator; we note that Γ itself is
independent of this regulator, while intermediate results may depend on it. With a regulator in place
we get well-defined results for webs diagrams contributing to w in 4−2ε space-time dimensions,
where ε > 0. Using (3.2) along with the definition of Γ we may express the perturbative coefficients
of Γ in terms of those of w = ∑w(n,k)αn

s εk:

Γ
(1) =−2w(1,−1) , (3.3a)

Γ
(2) =−4w(2,−1)−2

[
w(1,−1),w(1,0)

]
, (3.3b)

Γ
(3) =−6w(3,−1)+

3
2

b0

[
w(1,−1),w(1,1)

]
+3
[
w(1,0),w(2,−1)

]
+3
[
w(2,0),w(1,−1)

]
+
[
w(1,0),

[
w(1,−1),w(1,0)

]]
−
[
w(1,−1),

[
w(1,−1),w(1,1)

]]
,

(3.3c)

where bi are the coefficients of the β function. Commutators appear at two-loops and beyond as
a consequence of the non-commutativity of the webs in exp[w] and the counterterms in Z. It is
important to note that in contrast to the two-line case multiple poles do arise in the exponent w.
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The structure dictated by multiplicative renormalizability implies that all such multiple poles cor-
respond to commutators of lower orders, and can thus be predicted at order n without computing
O(αn

s ) webs. This in turn provides a strong check of multi-loop calculations if these are organised
as webs: at each order all but the single 1/ε coefficient (which contribute to the anomalous dimen-
sion (3.3)) are predetermined. This can be most concisely summarised by expressing the exponent
of Z in terms of the coefficients of the anomalous dimension Γ(n), namely

Z = exp
{

1
2ε

Γ
(1)

αs +

(
1

4ε
Γ
(2)− b0

4ε2 Γ
(1)
)

α
2
s

+

(
1

6ε
Γ
(3)+

1
48ε2

[
Γ
(1),Γ(2)

]
− 1

6ε2

(
b0Γ

(2)+b1Γ
(1)
)
+

b2
0

6ε3 Γ
(1)
)

α
3
s + O(α4

s )

}
,

(3.4)

where we note in particular that, at the three-loop order, O(ε−2) singularities do occur in the
exponent (even in a conformal theory where bn = 0) and these correspond to a commutator of Γ(1)

with Γ(2). In explicit three-loop calculations the double poles can be identified in webs that have
subdivergences: this was illustrated for the 1-2-3 and 1-1-1-3 webs in Ref. [20].

3.2 One-loop calculation

We are now ready to discuss the computation of the multi-gluon-exchange web integrals fol-
lowing [49], and we start with the simplest example: the one loop graph of figure 8 with a single
gluon exchange between Wilson lines i and j with velocities βi and β j. This is the familiar cusp con-

figuration, and owing to rescaling invariance the result can only depend on γi j = 2βi ·β j/
√

β 2
i β 2

j .
We use configuration space Feynman rules where the integration is over two parameters s and t
corresponding to the positions of the vertices along the two Wilson lines. The expression for the
web diagram is then:

w(1) = Ti ·Tj µ
2εg2

s N βi ·β j

∫ “∞”

0
ds
∫ “∞”

0
dt
(
− (sβi− tβ j)

2
)ε−1

= Ti ·Tj κ γi j

∫
∞

0
dσ

∫
∞

0
dτ

(
σ

2 + τ
2− γi jστ

)ε−1
e−σ−τ

= Ti ·Tj κ Γ(2ε)
∫ 1

0
dx pε(x,αi j)

(3.5)

where N ≡ Γ(1−ε)
4π2−ε and κ ≡−

(
µ2

m2

)ε g2
s

2 N and

pε(x,αi j) ≡ γi j

[
q(x,αi j)

]ε−1
, q(x,αi j) = x2 +(1− x)2− x(1− x)γi j, γi j =−

1
αi j
−αi j .

(3.6)
In the first line of eq. (3.5) we indicated that an infrared cutoff must be imposed using the notation
“∞” for the upper integration limit. The cutoff is implemented in a systematic way through an
exponential regulator which is made explicit in the second line. Exactly the same regulator will
be applied to each of the gluons in a multi-gluon-exchange diagram. The result for the anomalous
dimension will not depend on the regulator but, as we shall see, intermediate results at higher
orders will. In the second line of (3.5) we rescaled the parameters and arranged the kinematic
dependence in terms of γi j. In the third line we changed the integration to be the total distance

13
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λ = σ + τ and x = σ/(σ + τ). The latter varies in the range [0,1] and describes the tilt of the
gluon emission with respect to the Wilson lines. The integration over the total distance λ yields the
expected ultraviolet singularity. Finally in performing the last integration, over the tilt of the gluon,
it becomes apparent that the most convenient kinematic variable is αi j which is related to γi j as in
eq. (3.6). This definition implies an inversion symmetry αi j → 1/αi j, and we choose to consider

1−1 0

Figure 13: The analytic structure of the one-loop result in the complex α plane – a logarithmic branch cut
along the negative real axis – shown together with a contour describing the values of α for real values of γ:
the α ∈ (0,1) region corresponds to space-like kinematics (one incoming and one outgoing parton) where γ

varies between −∞ and −2; next, the region of complex α with a positive imaginary part corresponds to the
Euclidean region where −2 < γ < 2; and finally the region where α is near the branch cut, α = αr + iε with
αr ∈ (−1,0) and ε > 0, corresponds to time-like kinematics.

values inside the unit circle, |αi j| ≤ 1. At O(α1
s ε−1) we get:

w(1,−1)(αi j) =−
Ti ·Tj

4π

∫ 1

0
dx p0(x,αi j)

=
Ti ·Tj

4π

(
αi j +

1
αi j

)∫ 1

0
dx

1
x2 +(1− x)2 + x(1− x)(αi j +1/αi j)

=−Ti ·Tj

4π

1+α2
i j

1−α2
i j

∫ 1

0
dx

(
1

x− 1
1−αi j

− 1
x+ αi j

1−αi j

)

=−Ti ·Tj

2π
r(αi j) ln(αi j)

(3.7)

where the rational factor is r(αi j) ≡
1+α2

i j

1−α2
i j

. In a multi-gluon-exchange web such a rational factor

will be associated with each gluon. The analytic structure of the result can be understood from
physical considerations considering the various kinematic limits. The physical regions are shown in
figure 13. Positive values of αi j correspond to space-like kinematics as in deep inelastic scattering,
with one parton incoming the other outgoing. The extremal value, αi j = 1, corresponds to the
forward limit or a straight line. Here the zero of the logarithm cancels the pole of the rational
factor. Negative values of αi j correspond to time-like kinematics where both partons are in the
final state. Here the result should have an imaginary part, and it does. The extremal value here
is αi j = −1; this corresponds to heavy quark production near threshold, where the velocity of the
produced quarks is very small. Note that the rational factor r(α) generates the expected Coulomb

14
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singularity. Finally, the αi j → 0 corresponds to the lightlike limit; here the rational factor tends to
one, and there is a logarithmic divergence owing to the collinear singularity. Clearly the physical
region for αi j in figure 13 is exactly the same at higher orders. Specifically, the only special points
where one would expect the function to have branch points are αi j = {0,±1,∞}. In a multi-gluon-
exchange web there will be dependence on several αi j variables, but for each one still expects the
same physical region and the same set of branch points.

3.3 Two-loop calculation and the subtracted web

Moving on to two loops, we can gather further understanding of the analytic structure of gluon-
exchange webs. Calculations of the two-loop graphs of figure 9 have already been done in [31,33].
We will not reproduce any of the calculations here, but rather review some interesting properties of
the result identified in Ref. [49]. The 1-2-1 web (the two diagrams on the left hand side in figure 9)
is given by

w(2,−1)
121 (αi j,α jk) =− i f abcT a

i T b
j T c

k
1

(4π)2 r(αi j)r(α jk)
(

ln(αi j)S1(α jk)− ln(α jk)S1(αi j)
)
, (3.8)

where

S1(α) =−2
1

r(α)

∫ 1

0
dx p0(x,α) ln(x) =−2

[
−2Li2(α)+

1
2

ln2(α)−2ln(1−α) ln(α)+2ζ2

]
.

(3.9)

Our expectations with regards to the position of the branch points are clearly fulfilled. A con-
venient way to summarise the analytic structure of polylogarithmic functions is to consider their
symbol [50–53]. The symbol of the function S1(α) is:

S [S1(α)] = 4lnα⊗ ln(1−α)−2lnα⊗ lnα , (3.10)

where we use the convention used for the co-product term ∆1,1,...,1 [53] writing the ln explicitly.
According to eq. (3.3b) the anomalous dimension receives contributions from three terms (see

eq. (3.14)): the webs of figure 9, as well as a commutator of single-gluon integrals, the latter taking
the form:[

w(1,−1),w(1,0)
]
=−i f abcT a

i T b
j T c

k
1

(4π)2 r(αi j)r(α jk)4
(

ln(αi j)R1(α jk)− ln(α jk)R1(αi j)
)
,

(3.11)

where

R1(α) =
1
2

1
r(α)

∫ 1

0
dx p0(x,α) lnq(x,α) = 2Li2(−α)+2ln(α) ln(1+α)− 1

2
ln2(α)+ζ2 ,

(3.12)

and its symbol is:

S [R1(α)] = 2lnα⊗ ln(1+α)− lnα⊗ lnα . (3.13)
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Given that the commutator has the same rational prefactor as the 1-2-1 web it is natural to combine
the two, yielding the following expression for the anomalous dimension:

Γ
(2) =−4w(2,−1)

3g −4w(2,−1)
121 −2

[
w(1,−1),w(1,0)

]
︸ ︷︷ ︸

−4w(2,−1)
121

(3.14)

where the combination w(2,−1)
121 is referred to as the 1-2-1 subtracted web. More generally a sub-

tracted web is defined as the web plus the corresponding contribution of commutators of its subdi-
agrams to the anomalous dimension. The 1-2-1 subtracted web is given by

w(2,−1)
121 =−i f abcT a

i T b
j T c

k
1

(4π)2 r(αi j)r(α jk)
(

ln(αi j)U1(α jk)− ln(α jk)U1(αi j)
)

(3.15)

where the transcendental functions combine as

U1(α) = S1(α)+2R1(α) =−2Li2(1−α
2)−2ln2(α) . (3.16)

The symbol of U1 is

S [U1(α)] =−4lnα⊗ ln
α

1−α2 (3.17)

Here comes a very interesting observation: at symbol level we have a symmetry under α →−α

which was not anticipated6. It should be emphasised that the separate contributions of the 1-2-1
web and the commutator do not have such a symmetry; only the combined expression does. What
α →−α means physically is crossing a particle from the initial to the final state (recall the defi-
nition of γi j and eq. (3.6)). So this is a relation between space-like and time-like kinematics. To
understand it better, let us look at αi j expressed in terms of dimensionful kinematic variables:

αi j =

√
1−

√
m2

i m2
j

pi·p j
−
√

1+

√
m2

i m2
j

pi·p j√
1−

√
m2

i m2
j

pi·p j
+

√
1+

√
m2

i m2
j

pi·p j

. (3.18)

This relation becomes simple upon expansion near the lightlike limit. For m2
i → 0 we get:

αi j =

√
m2

i m2
j

−2pi · p j

[
1+O

(
m2

i m2
j

(2pi · p j)2

)]
(3.19)

where the corrections appear as integer powers of
m2

i m2
j

(2pi·p j)2 . Thus only the leading square-root term
is sensitive to the relative sign of the momenta pi and p j, namely to whether a given particle is in-
coming or outgoing. We expect logarithmic branch cuts starting at αi j = {0,±1,∞}, namely entries
of lnα , ln(1−α) and ln(1+α) in the symbol. Let us now examine the expansion of these entries

6It should be pointed out that a related observation was recently made in refs. [54–56]. It was found there that the
angle-dependent cusp anomalous dimension in N = 4 supersymmertic Yang-Mills can be expressed as a function of α2

through three loops, and at least for multiple-gluon-exchange diagrams this persists through six loops.
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near the lightlike limit. Entries of the form lnα are expected: they present a logarithmic collinear
singularity at small α and generate iπ terms for timelike kinematics (both pi and p j are outgoing);
at the symbol level, S (ln(−α)) = S (lnα), so there the symmetry α →−α clearly holds. En-
tries of the form ln(1±αi j), on the other hand, are proportional to the square-root of the squared
masses at leading order, violating the known analytic properties of amplitudes. Such square roots
will be avoided if, and only if, all ln(1−α) and ln(1+α) entries conspire to combine into the
combination ln(1−α2). This is exactly what happened in the subtracted-web combination w(2,−1)

121 .
Based on the expected analytic dependence on m2

i , we expect this to apply for the contribution of
any web to the anomalous dimension. Ref. [49] showed that the α →−α symmetry is broken for
non-subtracted webs (and for individual commutators entering the anomalous dimension) due to
the infrared regulator, but it is recovered for the symbol of the subtracted web.

3.4 General structure of multi-gluon-exchange webs and first three-loop results

Having deduced that organising the calculation in terms of subtracted webs is useful and leads
to recovering the crossing symmetry α →−α at the symbol level, and furthermore that the sym-
bol alphabet for subtracted multi-gluon-exchange webs is conjectured to be

{
lnα, ln(1−α2)

}
,

Ref. [49] went on to analyse the general form of the integrals for multi-gluon-exchange webs.
Using the change of variables we used in the one-loop calculation for any gluon in an n gluon

exchange diagram we arrive at the following general form:

F (n) ∼ κ
n
Γ(2nε)

∫
dx1dx2 . . .dxn φn−1(x1,x2, . . . ,xn;ε)

n

∏
k=1

pε(xk,αk)

= κ
n
Γ(2nε)

(
n

∏
k=1

r(αk)

)
sn({αk};ε)

(3.20)

where pε(xk,αk) is defined in (3.6) and φn−1 is a transcendental function of uniform weight n−1,
which is obtained along with the overall singularity Γ(2nε) upon integrating over the distance
variables of the n gluons. Performing the integrals over the tilt of the gluons xk, as in the second
line of (3.20), yields the familiar rational factor r(αi j) for each gluon exchange times a rather
complicated transcendental function sn which can be expressed in terms of Goncharov multiple-
polylogarithm. Fortunately, there is no need to perform this integral for individual diagrams, and
the result is much more transparent when organised in the form of subtracted webs. Ref. [49] has
shown that the integrals can be combined and the general result for a given subtracted web reads:

w(n,−1) =
(

αs

4π

)n
Ci1,i2,...in+1

∫
dx1dx2 . . .dxn ×

n

∏
k=1

p0(xk,αk)×

Gn−1

(
x1,x2, . . . ,xn;q(x1,α1),q(x2,α2), . . .q(xn,αn)

)
,

(3.21)

where Ci1,i2,...in+1 is a colour factor involving the generators of up to (n+1) Wilson lines and Gn−1

is a polylogarithmic function of uniform transcendental weight (n− 1). The contributions to the
anomalous dimension need to be summed over all subtracted webs of order n, Γ(n) =−2n ∑i w(n,−1)

i
(where we discarded running coupling terms).

It was further argued, based on the alphabet conjecture and the form of eq. (3.20) that Gn−1

is a sum of products of logarithms of its arguments (the basic reasoning is that if Gn−1 has poly-
logarithms of ratios of its argument the result would necessarily involve a richer alphabet). As a
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consequence w(n,−1) takes the form of a sum of products of polylogarithms each involving a single
cusp angle. Moreover, the basis of integrals can be systematically constructed, and this was so far
done for the class of four-line three-loop webs, where there are only two new functions U2(α) and
Σ2(α). Rather than quoting the result for the functions themselves (these can be found in [49]) we
just quote their symbols, which are remarkably simple:

S [U2(α)] = 4lnα⊗ ln
α

1−α2 ⊗ ln
α

1−α2 , (3.22)

S [Σ2(α)] = 2lnα⊗ lnα⊗ lnα . (3.23)

In terms of these functions the result for the 1-2-2-1 subtracted web of figure 5 is

w(3,−1)
(122334) =−

1
6

f abe f cdeT a
1 T b

2 T c
3 T d

4

(
1

4π

)3

G(α12,α23,α34) (3.24)

with

G(α12,α23,α34) = r(α12)r(α23)r(α34)

[
−8U2(α12) lnα23 lnα34−8U2(α34) lnα12 lnα23

+16
(

U2(α23)−2Σ2(α23)
)

lnα12 lnα34

−2lnα12U1(α23)U1(α34)−2lnα34U1(α12)U1(α23)+4lnα23U1(α12)U1(α34)

]
,

(3.25)

while that of the 1-1-1-3 subtracted web of figure 12 is

w(3,−1)
(123444) =−

1
6

(
1

4π

)3

T a
1 T b

2 T c
3 T d

4

[
f ade f bceF(α14,α24,α34)+ f ace f bde F(α24,α14,α34)

]
(3.26)

with

F(α14,α24,α34) = r(α14)r(α24)r(α34)×[
8U2(α14) lnα24 lnα34 +8U2(α34) lnα14 lnα24−16U2(α24) lnα14 lnα34

+2lnα14U1(α24)U1(α34)+2lnα34U1(α14)U1(α24)−4lnα24U1(α14)U1(α34)

]
.

(3.27)

4. Conclusions

In this talk we reviewed recent progress in the study of soft gluon exponentiation and long-
distance singularities. The first part of the talk illustrated the way in which the non-Abelian ex-
ponentiation theorem gets generalised when considering a product of more than two Wilson lines.
A first step was taken in Ref. [17] where an algorithm for computing exponentiated colour factors
was derived using the replica trick. This led to formulating exponentiation in terms of webs which
consist of sets of diagrams rather than individual ones, followed by the discovery [17–23] of several
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interesting properties of webs, which relate to their colour structure on the one hand and to their
renormalization properties on the other. Recently it was shown in complete generality [23] that the
colour factors in the exponent, for any web, are fully connected. The effective vertex formalism
(see example in figure 7) developed in order to prove this theorem also led a natural basis for the
colour factors, allowing to classify the connected colour factors which each web contributes to.

The second part of the talk was dedicated to the recent progress in evaluating the integrals of
multi-gluon-exchange webs [49]. We showed that organizing the calculation in terms of webs, and
then subtracted webs, is essential in performing such integrals; not only do subtracted webs evaluate
to substantially simpler expressions than individual diagrams, it is only at the level of the subtracted
web that infrared-reguarization invariance is fully recovered and physical properties such as cross-
ing symmetry are realised. We discussed the analytic structure of multi-gluon-exchange webs and
illustrated how this structure was inferred. A major conjecture of Ref. [49] is that the symbol alpha-
bet of all multi-gluon-exchange webs is

{
lnαi j, ln(1−α2

i j)
}

. This in turn led to the conclusion that
the result for any subtracted web in this class takes the form of a sum of products of polylogarith-
mic functions, each depending on a single cusp angle. The basis of functions was constructed for
the class of four-line three-loop webs. Finally, explicit calculations of these webs were performed,
confirming the expectations with regards to the analytic structure. The method of Ref. [49] is cur-
rently being used in the calculation of several other three- and four-loop webs [57]. This, along
with other recently developed techniques for dealing with multiple polylogarithms [50–53], which
proves essential in the calculation of connected webs [48], will eventually allow a complete cal-
culation of the three-loop anomalous dimension, and lead to better understanding of long-distance
singularities of scattering amplitudes.
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