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1. Introduction

After the discovery of a resonance at 12326 GeV at LHC [1, 2] we are entering a new
phase, prove or disprove that it is the Standard Model (SMpBklboson. High precision becomes
an essential ingredient; indeed, any machine that can meeesuplings with limited precision can
only claim a discovery of a SM-like Higgs boson. If the samehilme can measure couplings that
differ significantly from the predicted SM values, then ipisssible to rule out the SM Higgs boson
at that machine.

From the point of view of Higgs precision physics there aneesal vital steps or stages one
must climb. Here we have selected theoretical precisionraisding higher orders, other most
important issues include inadequacy of on-shell Higgs ioskysee Refs. [3, 4, 5, 6] and also
Refs. [7, 8] and Higgs effective Lagrangians, see Ref. [9] #re references therein (see also
Ref. [10]).

2. Theoretical accuracy

The traditional way for estimating theoretical uncert@istassociated to collider physics is
based on the notion of QCD (factorization and renormalizgtscale variation [11, 12]. However,
it is well known that there are several examples in the liteswhere the QCD scale uncertainty of
thenth order overestimates th{@ -+ 1)th order. Higher-order calculations for Higgs boson preduc
tion confirm that the gg-channel is the dominant one (70%)thatithere are largK factors, see
Ref. [13]. To summarize, the perturbative series for ggelnsonverges slowly and scale varia-
tions underestimate the next order (oply-dependence is significant here)3lMD computation in
gluon channel is underway, see Ref. [14, 15], while apprexéa\’LO results have been already
obtained in Ref. [16].

There is also an open and debatable question on how to aspigbability distribution func-
tion (pdf) to the MHOU and the generally accepted one is based Gaussian (or log-normal)
distribution; what to use for the standard deviation, reraan open problem. Alternatively, it
can be assumed that the pdf is a flat-box representing a Fadtbrval (or Bayesian confidence
interval). In this context it is worth noting the originalgposal made in Ref. [12] which is based
on the introduction of a flat (uninformative) Bayesian prior

Recently we have introduced [17] the concepiidl O(M HOU), missing higher order (uncer-
tainty), which has to do with the truncation error in the pdrative expansion and a proposal has
been made for predicting higher orders of the perturbatygaesion using the well-known concept
of series acceleration, i.e. one of a collection of sequérgesforms (T) for improving the rate of
convergence of a series. If the original series is divergim transform acts as an extrapolation
method; in the case of infinite sums, they have the effectstimais that formally diverge may return
a result that can be interpreted as evaluation of analytiension of the series for the sum. Given
partial sums

S= 3wk S=3 wt @)
k=0 k=0

the whole strategy is based on the fact that one can predicoéfficients wittk > n by construct-
ing an approximant with the known terms of the serigs.(.,y,) and expanding the approximant
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in a Taylor series. The firstterms of this series will exactly agree with those of the ioddjseries
and the subsequent terms may be treated as the predictditieoes. Therefore, i, ..., S, are
known, one computes

TS =V 2"+ 0 (29 (2.2)

andy,, , is the prediction fos,.1. Here, T, is a transformed sequence, e.g. one of the Levir’s
transforms (see Refs. [18, 19, 20, 21]), Wynn’s epsilontigm [22], Brezinski’sJ-algorithm [23]
or Weniger'sd -transform [19]. We also know that all transforms basicdliffer in the choice of
the remainder estimates. A good choice should satisfy th@fimg asymptotic condition [24]

R, = o ~C, n— oo (2.3)
wherew, is the remainder. For instance, Levin selemfs= AS,_1, whereA is the usual forward-
difference operatodS, = S..1 — S

The main application developed in Ref. [17] concerns thegss gg— H where one writes
the cross-section in terms of the lowest-order (LO) and &f-gactor admitting a formal power
expansion inas(ur) (i.e. 1+ 37 4 ad(Ur)Kgg). The first two (non trivial) coefficients of the
expansion are known (1879 and 7254) whereas, for the third one, we have an approximate
calculation available (with its own intrinsic uncertaijitgee Ref. [16].

The conclusion of Ref. [17] is that, to a very good accurdog, “true” cross-section value is
bracketed by the estimations of Eq.(2.4), with all othensfarms falling very close to the right
boundary.

Ogg € [agség"g’, agéf‘?’} (2.4)
SNn 0 - _ ONn _ 0 _ _
Ogg = Ogg (H =Mn) Syn (M =Mn) and  0gg " = Ogg (M =Mn) Oun (K =Mn)
(2.5)
where we have introduced tivth partial sum withn known coefficients
A k A k K
SNJ1 = Z as (UR) Kgg+ Z as (UR) Kgg (2.6)
k=0 k=n+1

and the corresponding Weniger-transform [19] of ortlebased om known partial sums, see
Ref. [17] for details. To summarize, the estimate of Ref] feHis us that the “true” cross-section
value is between the last known calculation and the largestigtion obtained by spanning over
7, the whole (discrete) set of STs, i.e. may GJ@NB (in this caseT is the Weniger transform of
orderN = 6). The resulting uncertainty, taken as a flat interval (forimative prior), corresponds
to a 1637% and its intrinsic uncertainty, induced by the error omtthird coefficient, brings us to
26.01%.

One should mention in this regard that there is no proof olutfigueness of the result recon-
structed from its asymptotic series. There is only numéeealence that all sequence transforms
produce a result within a small interval, which allows us $sign an uninformative prior, in the
Bayesian sense.

In conclusion, going from NNLO to RLO [16] produces an increase &f17% on the cross-
section; our completion gives an additionalr%. The corresponding pdf could be derived by
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Figure 1: In the left panel we show, . defined in Eq.(2.11) ankcw defined in Eq.(2.15). In the
right panel we show thd3/dn, defined in Eq.(2.14)

following the work of Ref. [12]: the prior, however, requirecanning ovey, the discrete (finite)
set of different approximants.

Therefore, the new proposal is to parametrize the effectldfy using a single, continuous,
variable for which we consider the parameter entering stiitequence transformations. For in-
stance, a Levim -transform can be further generalized by introducing a gldfamete3: consider
a series where the coefficients . . .,ys are known; we can usg », tunef3 to havey; = yz and use
the same value @8, to predicty, etc.

The original motivation for introducing the shift parameteas the following: a Levin-like
transform of ordek requiresk+ 1 terms of the original series and the fikst 1 terms of the series
expansion of the transform coincide with those of the odgseries for any value 8. Tuning 3
one can predict thie+ 3th term with a much higher accuracy, as discussed in Ref. [25

Our perspective is slightly different: we propose to Bsas the parameter effectively describ-
ing MHO effects. To this end, we introduce

o S WT(nK,i,B) Shi
) =TS Wik L B)

2.7)

Wi (nki,B) = (1) <k> %

and we writety for TE; furthermore, 7y denotes the approximamtwhere only the first partial
sums are exact.
At the moment there is a residual uncertainty on the valuléggf from Ref. [16] we find (at

Vs=8TeVandur = ur = My)

3 (K3 3
of |[K3e+AKE| = 05270043 (2.8)

4
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UsingKg# we predict

—3 B+1 (Kég)z
Kgg(B) =275— (2.9)
99 B+2 Ki
and construct a distribution )
—3
Kgg(B) —K3¢
2 _ gg gg
X = (72AK89 (2.10)

Introducingy = x2/2 andz? =y we obtainP,z (), which is the pdf for the initial uncertainty on

the third coefficient of the series,
2 _p E

Py2(B) = \/—Tre B (2.11)
Coming back to the original problem we defiagy() as
Ogg(B) = T4 (1 = Mn) Te2(B) (2.12)

where we are using only the first two coefficients of the seaigb deriveB.. as the solutions of the
equations
S33 3,63
Ogg (B-) = 0gg i ) Ogg (B+) = Ogg | (2.13)

It can be seen thatiy4(B) is a monotonically increasing function @. Therefore,ogg(f) in-
terpolates continuously between the two extremes of treniat of Eq.(2.4) and the MHOU is
parametrized in terms of a single function®f We can define the corresponding (MHOU) pdf by
following again the work of Ref. [12]; however, the naturariable that should enter the formal
uninformative prior is

o Ogg(B)
~ T s33
Ogg

insofar as such quantity measures deviations of the “troe$sssection from the known perturba-
tive approximation and our prior is uninformative w.rt. Therefore, we consider

-1 (2.14)

dp dp
P2(n) = Py2(B) an’ Pcn(n) = Pen(B) dn (2.15)
introducen; = n(B,) and
5
A .
(mﬂn) if n<1
2 .
PCH(r]):—sAr’ 1 it  1l<n<n,
5 .
(,,A—i’l) it n>n.

with An = ny — 1. Obviously,Pcy(B) = Pcr(n)dn/dB. Finally, P2 andPcy can be combined
by taking a convolution im -spaceg(n) = P2 ® Pcn. Starting from this definition, we can define
a more general reference prior: bet= (x1,...,%1) (x € X) be the entire observation vector for
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the process and({x},n) the density describing the model, including parton distiin functions
(PDF).

The advantage of this method relies on a formal definitiomebtetical uncertainty in terms of
a nuisance (continuous) parameterTherefore, we have a data vectowith probability density
p, X are the parameter of interest ands the nuisance. The information to be expected (reference
prior) is [26]

= [ @ [ dn plg.maen) in EEELD) (2.16)

Maybe reference prior could not be considered as the “bdsiice of a uninformative prior but
can be considered as the most successful one. Althoughitheoeguarantee that the frequentist-
matching property holds (e.g. when one uses a “naive" (jflatiinformative prior such as the
uniform distribution or a Gaussian distribution with a hugeiance), a posterior 95%-credibility
interval is also (at least, approximately) a 95%-confideinterval in the frequentist sense. There-
fore, one can also construct confidence intervals in theepias of the new nuisance parameter
(representing theoretical uncertainty) by using standaethods [27].

3. Conclusions

Using gluon fusion as a case study, we know that QCD scalendepee gives at most a
lower bound on the theoretical uncertainty. Following thepgmsal made in Ref. [17], where the
first (known) orders are used to construct an all-order apprant and the difference all-order -
fixed-order is used to estimate theoretical uncertaintygiwe a formal definition of theoretical un-
certainty in terms of a nuisance (continuous) parameteicandtruct the corresponding (posterior)
probability distribution function.
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