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1. Introduction

The anomalous magnetic moments of electron and muon have been measured with unrivaled

precision. In the case of the muon the experimental value1

a
exp
µ = 1.16592080(54)(33)[63] ·10−3 (1.1)

has to be compared with the theory prediction

atheo
µ = 1.16591790(65) ·10−3 . (1.2)

The discrepancy between the two values of about 3 standard deviations is approximately of the

same order as the four-loop QED corrections. The four- and five-loop corrections have been cal-

culated in Ref.[1] and have not been verified by an independent calculation. In this paper we will

present first steps to such an independent calculation to verify the results in Ref.[1]. An object

that is technically related is the MS–on-shell relation for quark masses in QCD. One of the main

motivations, why it is of importance to know the MS–on-shell relation with four-loop accuracy, is

the planned determination of the top-quark mass at a future linear collider. The precision reached

at such an experiment requires an equally precise knowledge of the MS–on-shell relation.

In the following we will review recent results for both the anomalous magnetic moment and

the MS–on-shell relation.

2. Calculation and Results

For both, the calculation of the MS–on-shell relation and the anomalous magnetic moment of

the muon, the evaluation of on-shell integrals is necessary. To be more precise, to obtain the MS–

on-shell relation the quark propagator has to be evaluated on its mass shell, while for the anomalous

magnetic moment the magnetic form factor of the muon-photon vertex has to be calculated for

vanishing photon momentum, thus also leading to an on-shell diagram. Typical diagrams appearing

in the calculation are shown in Fig 1 and 2. On-shell integrals have not been studied at four loops

in any detail. Thus one of the main obstacle for the calculation lies in the calculation of the missing

master integrals.

The calculation is set up as follows, the Feynman diagrams are generated using QGRAF [2],

its output is then converted into FORM [3] input using q2e and exp [4, 5]. Suitable projectors are

applied and the resulting scalar integrals are reduced to master integrals using integration-by-parts

identities implemented in CRUSHER [6] and FIRE [7]. The reduction leads to the master integrals

shown in Figs. 3 and 4. The integrals in Fig. 3 can be expressed in closed form in terms of Gamma

functions while the ones in Fig. 4 have been calculated in an expansion in ε = (d −4)/2 using the

method of dimensional recurrence and analyticity [8]. As an example we show the result for master

1The errors indicated in brackets denote the statistical and systematic ones. The error given in square brackets is

obtained by adding them in qudrature.
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integral M3 (cf. Fig. 4)

e4εγE M3 =−

1

6ε4
−

7

6ε3
−

(

10

3
+

13π2

18

)

ε−2
−

(

−
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6
+

73π2
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+

118ζ3

9

)

ε−1
−

(

−
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4
+
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+
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9
+
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)
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−
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−
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8
−
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+
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+

1121π4

60
+
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−
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−
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+
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+
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+
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+
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+
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3

27

)

ε2
−

(

−
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−
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−

482627ζ3
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−
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+
3757π2ζ3

54
+
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6
+
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+
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3
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+
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+

206434π2ζ5
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+
1267243ζ7

21

)

ε3 +O
(

ε4
)

. (2.1)

Figure 1: Feynman diagrams for the calculation of the MS–on-shell relation.

Figure 2: Feynman diagrams for the calculation of the anomalous magnetic moment.
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L1 L2
L3

L4
L5 L6

L7

Figure 3: Simple master integrals. They can be expressed in closed form in terms of Gamma functions.

M1 M2

M3

M4

M5

M6

Figure 4: Non-trivial master integrals. They can be calculated in an expansion in ε = (4− d)/2.

2.1 MS–on-shell relation

The MS–on-shell relation can be written as a power series in the strong coupling constant αs

zOS
m (µ) =

m̄q(µ)

Mq

=
ZOS

m

ZMS
m

= 1+
αs(µ)

π
δ z

(1)
m +

(

αs(µ)

π

)2

δ z
(2)
m +

(

αs(µ)

π

)3

δ z
(3)
m +

(

αs(µ)

π

)4

δ z
(4)
m

+O
(

α5
s

)

(2.2)

and labeling contributions from massless and massive quark loops by nl and nh, respectively, we

obtain the result for contributions from diagrams with at least two massless quark loops

zOS
m = 1−As1.333+A2

s (−14.229−0.104nh +1.041nl)

+A3
s

(

−197.816−0.827nh −0.064n2
h +26.946nl −0.022nhnl −0.653n2

l

)

+A4
s

(

−43.465n2
l −0.017nhn2

l +0.678n3
l + . . .

)

+O
(

A5
s

)

, (2.3)

with As = αs(mq)/π .
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2.2 Anomalous magnetic moment of the muon

In the approximation of a massless electron only the leading term including the logarithms can

be obtained. For the sub-leading contributions a proper asymptotic expansion has to be performed.

Expanding aµ in a power series in the fine structure constant α

aµ = 1+
α

π
a
(1)
µ +

(α

π

)2

a
(2)
µ +

(α

π

)3

a
(3)
µ +

(α

π

)4

a
(4)
µ

+O
(

α5
)

(2.4)

and marking contributions from electron loops by nl

a
(4)
µ = n3

l a
(43)
µ +n2

l a
(42)
µ + · · · (2.5)

we obtain the result for contributions with three electron loops

a
(43)
µ =

1

54
L3

µe−
25

108
L2

µe+

(

317

324
+

π2

27

)

Lµe−
2ζ3

9
−

25π2

162
−

8609

5832

≈ 7.19666 , (2.6)

where Lµe = ln(M2
µ/M2

e ). The result for diagrams with two electron loops can be further split into

a contribution with and without an additional muon loop, a
(42)b
µ and a

(42)a
µ , respectively,

a
(42)
µ = a

(42)a
µ +a

(42)b
µ ,

with

a
(42)a
µ = L2

µe

[

π2

(

5

36
−

a1

6

)

+
ζ3

4
−

13

24

]

+Lµe

[

−

a4
1

9
+π2

(

−

2a2
1

9
+

5a1

3
−

79

54

)

−

8a4

3
− 3ζ3 +

11π4

216
+

23

6

]

−

2a5
1

45
+

5a4
1

9
+π2

(

−

4a3
1

27
+

10a2
1

9

−

235a1

54
−

ζ3

8
+

595

162

)

+π4

(

−

31a1

540
−

403

3240

)

+
40a4

3
+

16a5

3
−

37ζ5

6

+
11167ζ3

1152
−

6833

864
≈ −3.62427 , (2.7)

a
(42)b
µ =

(

119

108
−

π2

9

)

L2
µe +

(

π2

27
−

61

162

)

Lµe −
4π4

45
+

13π2

27
+

7627

1944

≈ 0.49405 . (2.8)

Our results for a
(43)
µ and a

(42)b
µ agree with the results given in Refs. [12, 9]. The result for a

(42)a
µ

can be compared with the result from Refs. [1, 10]

aµ =−3.64204(112) . (2.9)

Our new result confirms the previously obtained results, the small discrepancy is due to missing

terms in the expansion in me/mµ .

To finish, let us also present the result of a recent calculation of the contribution from τ-leptons.

Using asymptotic expansion in Ref. [11] the four-loop corrections due to τ-leptons was obtained.

The new result

A
(8)
2,µ(Mµ/Mτ) = 0.0421670+0.0003257+0.0000015 = 0.0424941(2)(53) (2.10)

is more precise and in full agreement with previous evaluations [1].
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3. Conclusions

We presented results for both the MS–on-shell relation and the anomalous magnetic moment of

the muon at four-loop order. These result comprise a first step towards the full four-loop calculation

and confirm the results known in the literature.
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