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1. Introduction
The most authoritative candidate to represent the UV completion of our low energy field the-

ory models, in particular the standard model and Einstein-Hilbert gravity, is (super)string theory.
Superstring theory seems to have all the ingredients neededto describe the fundamental physical
interactions. In particular it provides a consistent quantization of gravity. However how the various
physical phenomena are accommodated in the string theory framework, starting from the elemen-
tary particle physics and ending with the physics of extremelarge distances and times, is still an
open problem, to say the least, notwithstanding the strenuous endeavor of string theorists and un-
deniable, but partial, progress made in many separate applications of string theory. Although the
picture is still not precise, it is plausible that the lattercan accommodate the physics of the stan-
dard model of elementary particles as well as a description of the evolution of the universe; it
does also shed light on the black hole physics. However many questions remain unanswered, the
identification of the vacuum to start with.

The panorama of superstring theory, on one side, is the same as about twenty years ago.
There are five consistent superstring theories in 10D, one open-closed (type I) and four closed
(IIA, IIB and two heterotic ones). In addition we have another consistent theory in 11D (M theory),
whose low energy limit is 11D supergravity. There exist alsoother consistent non-supersymmetric
theories, but the attention has been mostly focused on the supersymmetric ones. The latter are
connected by dualities and appear as limiting cases of a unique theory, characterized by a large
moduli space, when the relevant moduli take on specific limiting values. It is this unique theory that
people understand when generically referring to superstring theory. The ordinary way to extract
low energy information is to compactify the extra dimensions or else to consider configurations
of branes. In a way or another it is possible, for instance, toreproduce the spectrum and various
qualitative features of the standard model and to produce effective models for the evolution of the
universe, describing for instance inflation.

On the other hand in this panorama a different point of view was introduced by Maldacena
with his idea of the AdS/CFT correspondence. A stack of D3-branes in type IIB superstring theory
generate an AdS geometry that splits physics into two separated systems, a supersymmetric gauge
theory and a supergravity theory. However, since the theoryis unique, the two systems must be
related in a one-to-one way. This argument is the basis of thecorrespondence. The latter is a
duality of the strong-weak coupling type, so that it can be directly verified only in the presence of
supersymmetry: the original case refers to N=4 conformal gauge theory in 4D and a supergravity
theory in 10D; such an amount of supersymmetry guarantees the persistence of many properties
while going from weak to strong coupling. AdS/CFT has been nevertheless hypothesized also
in the case of reduced or no supersymmetry, or for non-conformal theories. The basic idea is
the holographic correspondence between a gauge theory on the boundary of an AdS space and a
(super)gravity theory that lives on the bulk of the latter. This brings into the game a new concept:
gauge theories and gravity theories seem to becomplementaryrather thandistinct, they complete
each other rather than being two separate entities. They seem to describe in different ways the same
basic underlying physics.

The AdS/CFT correspondence, as it is commonly used, relatestwo field theories, but it should
not be forgotten that, in the original case, it is formulatedin the framework of superstring theory
and it requires at least type IIB theory onAdS5×S5 for the full duality to work. In other words
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the natural framework for this kind of correspondence is string theory. And since the low energy
effective theory of the open strings on a stack of D-branes isa gauge theory, while gravity is
generated by closed strings, one is naturally led to think that the basic duality is the one between
open and closed strings. Even more, since closed strings source D-branes, it seems to be unlikely
that open and closed strings can be treated as separate entities (except for closed strings at the
perturbative level).

A logical conclusion of the previous reasoning is that a fullunderstanding of holographic du-
alities can be acquired only in the framework of string theory, and that the underlying duality to be
considered is the open-closed string duality. Now the question is: what is the best context in which
these problems can be analyzed? The abovementioned (super)string theories are first quantized
theories, and although one can go a long way even without a second quantized string theory, there
seems to be insurmountable difficulties if one tries to draw acompletely satisfactory picture of the
theory. For instance, while there are no obstructions in constructing on-shell perturbative ampli-
tudes of a given string theory, there is no unambiguous guidein constructing off-shell amplitudes.

Thus it is extremely desirable, if not compulsory, to have a full-fledged second quantized
string theory. In this regard, the present situation is as follows. We have a covariant formulation
(à la Witten), [1], of second quantized bosonic open string theory (OSFT) with a cubic interaction
term, which is well defined and consistent (see below). Witten formulated also a boundary SFT,
a theory of 2D theories so to speak, defined on a unit disk with perturbations on the boundary,
which, however, has serious renormalization problems. As for bosonic closed string theories, their
second quantized version can be formulated in analogy to theOSFT, but the cubic interaction term
is not enough to cover the moduli space (see below), so one is obliged to introduce infinite many
interaction terms, ending up with a nonpolynomial theory; as a consequence perhaps this theory
cannot be properly called a field theory. Coming to the secondquantized superstring theories
(OSSFT), there is the analog of the bosonic OSFT, also proposed by Witten; this theory however has
contact singularities. A successful alternative is Berkovits’ open superstring field theory, modelled
on the WZW model, which passes many significant tests. Recently strong arguments have been
put forward to show that the original Witten’s OSSFT is a sortof singular gauge limit of Berkovits’
OSSFT. The basic drawback of both approaches is that they have been formulated only for the NS
sector while the R sector (the fermionic one) is at present missing.

Summarizing, second quantized superstring theory is stillwaiting for a complet formulation.
On the other hand a bosonic closed SFT does not seem to be (at least) technically viable. If this is
so one is obliged to conclude that at present the only consistent SFT at our disposal is Witten’s open
SFT. Does it make sense to focus on this theory and take it seriously? It should be pointed out that,
as a matter of principle, we have no a priori reason to believethat a unique and complete SFT theory
exists at all. On the other hand the old objections against Witten’s OSFT (the tachyon, the tadpoles
contributions) seem by now to be obsolete: the recent successes of this theory indicate that these
problems are not intrinsic to the theory but rather to the waywe solve it. The traditional motivation:
OSFT is an extremely useful playground while waiting for theits consistent full supersymmetric
version may be diminishing and perhaps misleading. We will return to this point at the end of
the paper. These lecture notes focus on those aspects of OSFTà la Witten that are instrumental
in guiding the reader to understand and appreciate the analytic solutions of the SFT equation of
motion derived in recent years.
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The reader should be made aware that other reviews and lecture notes in SFT exist in the
literature, [2, 3, 4, 5, 6, 7, 8]. They cover other aspects notcovered here while, sometimes, partially
overlapping with the present notes, The reader is invited toconsult them.

2. The bosonic open SFT

This is a short summary of first quantized open bosonic theory.
First quantized open string theory in the critical dimension D=26 is formulated in terms of

quantum oscillatorsαµ
n , −∞ < n < ∞, µ = 0,1, . . . ,25, which come from the mode expansion of

the string scalar field

Xµ(z) = xµ −2ipµ lnz+ i
√

2 ∑
n6=0

αµ
n

n
z−n

having set the characteristic square length of the stringα ′ = 1. They satisfy the algebra[αµ
m,αν

n ] =

mη µνδn+m,0, η µν being the space–time Minkowski metric. The vacuum is definedby αµ
n |0〉 = 0

for n > 0 andpµ |0〉 = 0. The states of the theory are constructed by applying to thevacuum the
remaining quantum oscillatorsαµ†

n = αµ
−n, with n > 0. Any such state|φ〉 is given momentumkµ

by multiplying it by the eigenfunctioneikx. This state with momentum will be denoted by|φ ,k〉. In
order for such states to be physical they must satisfy the conditions

L(X)
n |φ ,k〉 = 0, n > 0, (L(X)

0 −1)|φ ,k〉 = 0 (2.1)

whereL(X)
n are the matter Virasoro generators

L(X)
n =

1
2

∞

∑
k=−∞

: αµ
n−kαν

k : ηµν (2.2)

Hereα0 = p and :: denotes normal ordering. The conditions (2.1) are thequantum translation of
the classical on-shell vanishing of the energy–momentum tensor. TheL(X)

n are the moments of
the energy-momentum tensor of the theory, and the constraints (2.2) are the most stringent one
can impose compatible with the Virasoro algebra (2.4) below. These constraints, whenD = 26,
eliminate all the negative norm states of the Fock space and define a physical Hilbert space.

In particular, by means of (2.1), we can identify the physical spectrum of the theory (in D=26).
All the states are ordered according to the level, the level being a natural number specified by the
eigenvalue ofL(X)

0 + L(gh)
0 − p2

2 . The lowest lying state (level 0) is the tachyon representedby the
vacuum with momentumk, |0,k〉, with pµ |0,k〉 = kµ |0,k〉. Its square massM2 = −1. The next
(level 1) is the massless vector stateζµ αµ

−1|0,k〉 with k2 = 0 andζ · k = 0, and is identified with
a gauge field. The other states are all massive, with increasing masses proportional to the Planck
mass.

String theory is a particular example of 2d conformal field theory. The state-operator corre-
spondence, characteristic of conformal field theory, allowus to associate a 2d field to any state of
the spectrum. They are the vertex operators. For instance, to the tachyon we associateVt(k) =:
eik·X :; to the vector stateVA(k,ζ ) =: ζ · Ẋeik·X :, where the dot on top ofX denotes the tangent
derivative with respect to the world–sheet boundary (the real axis in thez UHP); and so on. In
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this way the rules of conformal field theory allow us to calculate any kind of amplitude of these
operators〈V1(k1) . . .VN(kN)〉, as far as these amplitudes areon shell. At low energy,α ′ → 0, such
amplitudes reproduce those of the corresponding field theory (for instance, the amplitudes ofVA

reproduce the amplitudes of a Maxwell field theory). If we want to computeoff–shellamplitudes
the above rules are insufficient and in general we have to resort to a field theory of strings. This
was a major motivation for introducing string field theories.

So far we have ignored ghosts. Indeed theb(z),c(z) ghosts, which come from the gauge fixing
of reparametrization invariance via the Faddeev–Popov recipe, play a minor role in perturbative
string theory. They play a much more important role in SFT. Weexpand them as well in modescn

andbn and construct the corresponding Virasoro generators

L(gh)
n =: ∑

k

(2n+k)b−kck+n : (2.3)

Both (2.2) and (2.3) obey the same Virasoro algebra

[Ln,Lm] = (n−m)Ln+m+
c

12
(n3−n)δn,0 (2.4)

The central chargec equals the number ofX fields in the matter case (i.e. 26), while it equals -26 in
the case of theb,c ghosts. So the total central charge (i.e. the central chargeof Ln = L(X)

n +L(gh)
n )

vanishes in D=26. This guarantees the absence of any trace anomaly, and therefore consistency of
the bosonic string theory as a gauge theory. From now on we concentrate only on this case.

The previous results about ghosts and critical dimension, can be usefully reformulated in terms
of BRST symmetry and its chargeQ. Q is defined by

Q = ∑
n

: c−n

(

L(X)
n +

1
2

L(gh)
n −δn,0

)

: (2.5)

It is hermiteanQ† = Q and its basic property is nilpotency,Q2 = 0, (only) in critical dimension.
The study of the physical spectrum can be reformulated in terms of the cohomology ofQ. First of
all the vacuum|0〉 is understood to be theSL(2,R) invariant vacuum, i.e. the vacuum annihilated
by Ln with n≥−1. It is normalized as follows

〈0,k|c−1c0c1|0,k′〉 = δ (26)(k,k′)

We apply all possible bosonic and ghost creation operators to c1|0〉, and split the so obtained states
according to the levell . Then the physical states of perturbative string theory at level lare the
states (with momentum) belonging to that level that are annihilated by Q, defined up to states
obtained by acting withQ on any state of the same level. I.e.the physical states are identified with
the non-trivial cohomology classes of Q.They can be represented by the old physical states|φ ,k〉
tensored with the ghost factorc1|0〉g where|0〉g is theSL(2,R) invariant ghost vacuum.

With this at hand we can now turn to string field theory.

3. OSFT

The open string field theory action proposed by Witten, [1], is defined in D=26 by the action

S (Ψ) = − 1
g2

o

∫

(

1
2

Ψ∗QΨ+
1
3

Ψ∗Ψ∗Ψ
)

. (3.1)

5
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This action is clearly reminiscent of the Chern–Simons action in 3D.go is the open string coupling.
The BRST chargeQ is the one introduced above for the first quantized string theory. Later on we
will explain whatΨ,

∫

and⋆ mean. For the time being let us state the rules they must satisfy:

a) Q2 = 0,

b)
∫

QΨ = 0,

c) Q(Ψ1 ∗Ψ2) = (QΨ1)∗Ψ2 +(−1)ε(Ψ1)Ψ1∗ (QΨ2), Q is a derivation

d)
∫

Ψ1∗Ψ2 = (−1)ε(Ψ1)ε(Ψ2)
∫

Ψ2∗Ψ1, cyclicity

e) (Ψ1 ∗Ψ2)∗Ψ3 = Ψ1 ∗ (Ψ2∗Ψ3), associativity (3.2)

whereε(Ψ) is the Grassmannality of the string fieldΨ, which, for bosonic strings, coincides with
the ghost number. The action (3.1) is invariant under the BRST transformation

δΨ = QΛ+ Ψ∗Λ−Λ∗Ψ. (3.3)

Finally, the ghost numbers of the various objectsQ,Ψ,Λ,∗,∫ are 1,1,0,0,−3, respectively.
It is very often convenient to express the action in a more abstract way. The integral therein

can be thought of as a bilinear form〈· , ·〉:

S (Ψ) = − 1
g2

o

[

1
2
〈Ψ,QΨ〉+ 1

3
〈Ψ,Ψ∗Ψ〉

]

. (3.4)

While the propertiesa),e) in (3.2) remain the same, in terms of〈· , ·〉 the other properties can be
written

c′) 〈QΨ,Φ〉 = −(−1)ε(Ψ)〈Ψ,QΦ〉
d′) 〈Ψ,Φ〉 = (−1)ε(Ψ)ε(Φ)〈Φ,Ψ〉
f ) 〈Ψ,Φ⋆Ξ〉 = 〈Ψ⋆Φ,Ξ〉 (3.5)

The last property is a consequence of the star product associativity and of identifying the bilinear
form with integration. The analog of propertyb) is not explicitly stated. It is a consequence of the
existence of the identity string fieldI , which is defined byΨ⋆ I = I ⋆Ψ = Ψ. I has 0 ghost number
and Grassmannality. Using thatQ is a derivation we get for anyΨ

QΨ = Q(I ⋆Ψ) = QI ⋆Ψ+ I ⋆QΨ = QI ⋆Ψ+QΨ,

ThusQI = 0, which implies
∫

QΨ =

∫

QΨ⋆ I = 〈QΨ, I〉 = (−1)ε(Ψ)〈Ψ,QI〉 = 0

From now on we understand the identification〈Ψ,Φ〉=
∫

ψ ⋆Φ. The bilinear form can be identified
with and extends the inner product in the Fock space

〈A,B〉 = 〈bpz(A)|B〉 (3.6)

6
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where, according to the state operator correspondence in CFT, |B〉 = B(0)|0〉 and 〈bpz(A)| =

limz→∞ z2h〈0|A(−1
z), whereh is the conformal weight ofA(z). By definition

bpz|0〉 = 〈0|, bpz(A(z)) = i◦A(z) =
1

z2h
A(−1

z
) (3.7)

wherei(z) = −1
z. It follows in particular that

bpz(an) = (−1)n+1a−n, bpz(cn) = (−1)n+1c−n bpz(bn) = (−1)nb−n

and bpz(Ln) = (−1)nL−n. Here we have adopted the notation:an = αn√
n).

Let us next explain in turn whatψ ,⋆ and
∫

are.

3.1 The string field

In (3.1) Ψ is the string field. It can be understood either as a classicalfunctional of the open
string configurationsΨ[xµ(σ),c(σ),b(σ)], whereσ = ℑ ln(z), or as a vector in the Fock space of
states of the open string theory. In the sequel we will consider essentially this second point of view.
In the field theory limit it makes sense to representΨ as a superposition of Fock space states with
ghost number 1, with coefficient represented by (infinite many) local fields,

|Ψ〉 =

∫

d26p
[

(φ̃ (p)+ Ãµ(p)aµ†
1 + . . .

]

c1|0〉. (3.8)

3.2 Star product and integral

One of the most fundamental ingredients is the star product.Physically it represents the string
interaction, that is the process of two strings coming together to form a third string. More precisely
the product of two string fieldsΨ,Φ represents the process of identifying the right half of the first
string with the left half of the second string and integrating over the overlapping degrees of freedom,
to produce a third string which corresponds toΨ∗Φ. This can be implemented in different ways,
either by using the classical string functional, conformalfield theory or by means of the oscillator
formalism.

Consider two classical string fieldsΨ[x(σ)],Φ[x(σ)] (for simplicity we ignore the ghost de-
pendence). Then their star product is defined by

(Ψ⋆Φ)[z(σ)] =

∫

∏
0≤τ ′≤ π

2

dy(τ ′)dx(π − τ ′) ∏
π
2≤τ≤π

δ (x(τ)−y(π − τ))Ψ[x(τ)]Φ[y(τ)] (3.9)

wherez(σ) = x(σ) for 0 ≤ σ ≤ π
2 andz(σ) = y(σ) for π

2 ≤ σ ≤ π. The delta function clearly
reproduces the overlapping alluded to above.

The integration in (3.1) corresponds to bending the left half of the string over the right half
and integrating over the corresponding degrees of freedom in such a way as to produce a number:

∫

Ψ =

∫

∏
0≤τ ′≤π

dx(τ ′) ∏
0≤τ≤ π

2

δ (x(τ)−x(π − τ))Ψ[x(τ)] (3.10)

The meaning of these two formulas is rather clear, but they are not very practical. A very
practical definition is instead provided by embedding the problem in CFT. Let us start from the

7
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integral. As we said above we can interpret it as the inner product in the Fock space. Let us make
it clear with an example. Consider the string field (a constant tachyon)|Ψ〉 ≡ T = tc1|0〉, wheret
is a constant. Then we can compute (disregarding an infinite volume factor)

∫

T ⋆QT = 〈T,QT〉 = t2〈0|c−1,Qc1|0〉 = −t2〈0|c−1c0c1|0〉 = −t2 (3.11)

since[Q,c1]+ = −c0c1.
The important point is that the inner product〈A|B〉 can be interpreted as a two-points correlator.

Consider the maps

w1(z) =
1+ iz
1− iz

, w2(z) =
z− i
z+ i

(3.12)

The first maps the unit semidisk to a unit semidisk rotated 90o in the anticlockwise direction, so that
the string midpointz= i is mapped to the origin (see fig.1), and the second maps the unit semidisk
to a unit semidisk rotated by 90o in clockwise sense. If we fit the two final semidisks into a unit
disk they represent two strings overlapping the left half ofone with the right half of the other and
forming a third string which bends on itself so that the two halves overlap (the integral), see fig.1.
Now we map the so obtained unit disk to theζ UHP by means of the map

ζ = h−1(w) = −i
w−1
w+1

(3.13)

and define the mapsji = h−1◦wi, that is

j1(z) = z, j2(z) = i(z) = −1
z

(3.14)

Then we can write

〈A,B〉 = 〈bpz(A)|B〉 = 〈j2◦A(0) j1◦B(0)〉 (3.15)

As an example let us apply this to (3.11). Starting fromQc(z) = c∂c(z) and using the correlator

A B

A

B

OC D

C

D

O
M

M

M O

z
w w

11 1

1
1 1

2
M2

2
2O2

z2

Figure 1: The conformal maps from the two unit semi-disks to the unit disk

〈c(z1)c(z2)c(z3)〉 = (z1−z2)(z1−z3)(z2−z3) (3.16)
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one gets

〈j2◦T(0) j1◦QT(0)〉 = t2 〈c(j2(0))c∂c(j1(0)〉
j′2(0)j′1(0)

= − t2 (3.17)

which coincides with〈T,QT〉 calculated above, (3.11).
It is easy to apply the same idea to the cubic term in the action. Let us consider three unit

semi-disks in the upper halfza (a= 1,2,3) plane. Each one represents the string freely propagating
in semicircles from the origin (world-sheet timeτ = ℜ lnz=−∞) to the unit circle|za|= 1 (τ = 0),
where the interaction takes place. We map each unit semi-disk to a 120◦ wedge of the complexw
plane via the following conformal maps:

ga(za) = α2−ag(za) , a = 1,2,3, (3.18)

where

g(z) =
(1+ iz

1− iz

)
2
3
. (3.19)

Hereα = e
2π i
3 .

M

M

M

M

z

z
¹

z

³

²

³

¹

²(

³(

(

z

z

z¹

³

)

²
)

)

.

.

g

g

g

Figure 2: The conformal maps from the three unit semi-disks to the three-wedges unit disk

In this way the three semi-disks are mapped to non-overlapping (except along the edges) re-
gions in such a way as to fill up a unit disk centered at the origin. The curvature is zero everywhere
except at the center of the disk, which represents the commonmidpoint of the three strings in in-
teraction. It is clear that this geometry simulates precisely the joining of two strings to form a third
string, as explained above. To complete the process we map the unit disk to theζ UHP via the map
h−1 and definefi = h−1◦gi , i = 1,2,3. On this basis the second term in (3.1) can be interpreted asa
UHP correlator defined by the above geometry with insertionsof Ψ at the origin of each semidisk,
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which are mapped to the points−
√

3,0,
√

3 of the UHP, respectively (after allΨ is nothing but a -
possibly infinite - combination of vertex operators). In general for any three string fieldsA,B and
C, whose total ghost number is 3, the integral of the star product is given by the correlation function
on the disk in the following way

∫

A∗B∗C = 〈 f1◦A(0) f2 ◦B(0) f3 ◦C(0)〉 (3.20)

So, calculating the star product amounts to evaluating a three point function on the UHP.
Let us see an example. Suppose|Ψ〉 ≡ T = tc1|0〉 as above. We have

f1◦c(0) =
c( f1(0))

f ′1(0)
=

3
8

c(
√

3), f2◦c(0) =
2
3

c(0), f3 ◦c(0) =
3
8

c(−
√

3)

Using (3.16) one finally gets (again forgetting an infinite volume factor)

∫

T ⋆T ⋆T =
81
√

3
64

t3 (3.21)

For later use let us record that the action for the string fieldT = tc1|0〉 (constant tachyon) per
unit volume, is

∫(T) =
1
g2

o

(

1
2

t2− 27
√

3
64

t3

)

(3.22)

(3.20) suggests how to define the star product of two string fields A andB. It is defined by
(3.20) for any string fieldC.

3.3 The two-strings and three-strings vertex

There is a third way to represent both (3.15) and (3.20). Thisthird way leads to an explicit
representation of the star product. It is based on the two-strings and three-strings vertex, which can
be explicitly represented in terms of oscillators. The defining relations are

〈A,B〉 =
∫

A⋆B = 〈V2||A〉1|B〉2 (3.23)

〈A,B,C〉 =

∫

A⋆B⋆C = 〈V3||A〉1|B〉2|C〉3 (3.24)

for any three string fieldsA,B,C. 〈V2| is defined in the tensor product of two Fock spaces and the
labels 1,2 in (3.23) refer to the latter. Likewise〈V3| is defined in the triple tensor product of Fock
spaces. The ansatz for these vertices (at zero momentum) is as follows

〈V2| = N2(〈0|c−1)
(2)(〈0|c−1)

(1)
(

c(1)
0 +c(2)

0

)

e−
1
2 ∑2

r,s=1 ∑n,m≥1α (r)
m Mrs

mnα (s)
n

·e− 1
2 ∑2

r,s=1 ∑m,n≥1 b(r)
m Yrs

mnc
(s)
n (3.25)

〈V3| = N3(〈0|c−1c0)
(3)〈0|c−1c0)

(2)(〈0|c−1c0)
(1) e−

1
2 ∑3

r,s=1 ∑n,m≥1 α (r)
m Nrs

mnα (s)
n

·e− 1
2 ∑3

r,s=1 ∑m≥0,n≥1b(r)
m Xrs

mnc
(s)
n (3.26)
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Here and in the sequel, for simplicity, we understand the Lorentz indices of theα oscillators.
The constantsN2 andN3 can be fixed by normalizing the vertex in such a way that〈c,c∂c〉 =
〈V2||c〉1|c∂c〉2 = −1, as in eq.(3.17) (|c〉 = c(0)|0〉, etc.), and〈c,c,c〉 = 〈V3||c〉1|c〉2|c〉3 = 81

√
3

64 as
required by〈c−1c0c1〉 = 1 and by (3.21). This implies

N2 = 1, N3 = β 3, β =
3
√

3
4

ClearlyMrs
nm = Msr

mn, Nrs
nm = Nsr

mn.
A simple method to determine the entries of the matricesM,N,X,Y is to impose that the

correlator of two free fields be reproduced by radial orderedproduct of the two free fields contracted
between the vertex and the vacua. In the sequel we will explain this procedure in detail for the two
strings vertex at zero momentum. For the matter part of the latter we must have

〈V2|R
(

i∂X(r)(z) i∂X(s)(z)
)

|0〉1|0〉2 = 〈jr ◦ i∂X(z) js◦ i∂X(w)〉 (3.27)

with r,s= 1,2. We have dropped, for simplicity, the Lorentz indices inX. For instance, for|z|> |w|,
the LHS is

〈V2| ∑
n,m<0

α(r)
n

zn+1

α(s)
m

zm+1 |0〉1|0〉2 = − ∑
n,m=1

Mrs
mnzn−1 wm−1 = Mrs(z,w) (3.28)

Mrs(z,w) is referred to as Neumann function. Using the correlator〈i∂X(z) i∂X(w)〉 = 1
(z−w)2 , the

RHS of (3.27) becomes

j′r(z)j
′
s(w)

(jr(z)− js(w))2 =
1

(1+zw)2 , r 6= s, =
1

(z−w)2 , r = s

It follows that

M12
mn = M21

mn = − 1
nm

∮

dz
2π i

1
zm

∮

dw
2π i

1
wn

1
(1+zw)2 =

(−1)n

n
δn,m

M11
mn = M22

mn = − 1
nm

∮

dz
2π i

1
zm

∮

dw
2π i

1
wn

1
(z−w)2 = 0

As for the ghost part, we use theb− c propagator〈b(z)c(w)〉 = 1
z−w. In order to determine

Yrs
mn, we equate

Grs(z,w) = 〈V (g)
2 |R

(

b(s)(z)c(r)(w)
)

c(1)
1 |0〉1c(2)

0 c(2)
1 |0〉2 (3.29)

with

〈js◦b(z) jr ◦c(w) j2◦c(0) j1◦c∂c(0)〉 (3.30)

From the first equation we get

Yrs
mn = −2

∮

dz
2π i

1
zn−1

∮

dw
2π i

1
wm+2 Grs(z,w) (3.31)
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On the other hand, using the correlator

〈b(z)c(w)c(x)c∂c(w)〉 = − 1
z−w

(x−y)2 +
1

z−x
(w−y)2+

1
x−y

(w−x)2

− 1
(z−y)2(w−x)(w−y)(x−y)

(3.30) can be rewritten as

j′s(z)
2

j′r(w)

(

− 1
js(z)− jr(w)

− jr(w)

js(z)2 −
1

js(z)

)

(3.32)

Equating (3.29) and (3.30) yields

G11(z,w) = − 1
z−w

− w
z2 −

1
z
, G22(z,w) = −w3

w3

1
z−w

+
w
z2

G12(z,w) =
1
z3

1
1+zw

− w
z2 +

1
z3 , G21(z,w) = −w3 1

1+zw
+

w
z2 −

w2

z

Plugging these results in (3.31) we get

X11
mn = X22

mn= 0, X12
mn = X21

mn = −(−1)nδn,m

On the basis of these results the two-strings vertex at zero momentum can be written

〈V2| = (〈0|c−1)
(2)(〈0|c−1)

(1)
(

c(1)
0 +c(2)

0

)

e
−(−1)n ∑n≥1

[

a(1)
n a(2)

n +c(1)
n b(2)

n +c(2)
n b(1)

n

]

(3.33)

This is called alsoreflectorbecause it maps any string field into itsbpz-conjugate.

The three-strings vertex can be determined in an analogous way. For instance, for the matter
part we equate

〈V (m)
3 |R

(

(i∂X(r)(z) i∂X(s)(w)
)

c(1)
1 |0〉1c(2)

1 |0〉2c(3)
1 |0〉2 (3.34)

with

N3〈 fr ◦ i∂X(z) fs◦ i∂X(w)〉 (3.35)

Using the correlator〈i∂X(z) i∂X(w)〉 = 1
(z−w)2 and proceeding as above one gets

Nrs
nm = − 1

nm

∮

dz
2π i

1
zm

∮

dw
2π i

1
wn

f ′r (z) f ′s(w)

( fr(z)− fs(w))2 (3.36)

For the ghost part one gets similarly

Xrs
nm =

∮

dz
2π i

1
zn−1

∮

dw
2π i

1
wm+2

f ′r (z)
2

f ′s(w)

−1
fr(z)− fs(w)

∏3
i=1( fs(w)− fi(0))

∏3
j=1( fr(z)− f j(0))

(3.37)

from which one can compute all the entries. It has to be noticed that both in (3.36) and in (3.37) we
can replace we can replavefr with gr without changing the result. This is due to invariance of the
correlators used under the maph−1, more generally under dilatations andSL(2R) transformations.

12
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When considering states carrying nonzero momentum we have to change the matter part of
the above vertices. For the two strings vertex the change is rather modest. In (3.25) we use the
vacuum with momentum〈0;k| instead of the simple vacuum〈0| and integrate over the conserved
momentum. So

〈V2| =
∫

d26p(〈0;p|c−1)
(2)(〈0;−p|c−1)

(1)
(

c(1)
0 +c(2)

0

)

e
−(−1)n ∑n≥1

[

a(1)
n a(2)

n +c(1)
n b(2)

n +c(2)
n b(1)

n

]

(3.38)

The changes in the three strings vertex are more sizable. Theend result turns out to be

〈V3| = β 3
∫

d26p(3)
∫

d26p(2)
∫

d26p(1)(〈0;p|c−1c0)
(3)〈0;p|c−1c0)

(2)(〈0;p|c−1c0)
(1) (3.39)

·e−
1
2 ∑3

r,s=1

[

∑n,m≥1 α (r)
m Vrs

mnα
(s)
n +∑m≥1 2α (r)

m Vrs
m0p(s)+p(r)Vrs

00p(s)
]

e−
1
2 ∑3

r,s=1 ∑m≥0,n≥1 b(r)
m Xrs

mnc
(s)
n δ

(

3

∑
r=1

p(r)

)

where the coefficient are as follows.

V rs
nm =

√
nmNrs

nm (3.40)

andNrs
nm are the Neumann coefficients given above (3.36). TheV rs

m0 are related to the zero mode
Neumann coefficientsNrs

m0 defined by

Nrs
0m = − 1

m

∮

dw
2π i

1
wm

g′s(w)
1

gr(0)−gs(w)
(3.41)

by the relation

V rs
n0 = (−1)n

√
2n

(

Nrs
0n−

2
3

in

n

)

(3.42)

Finally

Vab
00 = δab ln

27
16

(3.43)

This is motivated by one of the most surprising and mysterious aspects of SFT, namely its un-
derlying integrable structure: the matter Neumann coefficients obey the Hirota equations of the
dispersionless Toda lattice hierarchy.

From (3.383.39) one can compute the corresponding ket expressions for the vertices, by taking
thebpz- conjugate. Using them one can do more than computing the SFTaction, one can compute
the star product of any two string fieldsΨ1,Ψ2. To this end compute

〈Ψ3| = 〈V3||Ψ1〉1|Ψ2〉2

This is thebpz-conjugate ofΨ1 ⋆Ψ2. Alternatively compute〈Ψ3||V2〉.

3.4 Gauge symmetry and gauge fixing

Above we have pointed out that the action (3.1) is invariant under the gauge transformation

δΨ = QΛ0 + Ψ⋆Λ0−Λ0 ⋆Ψ (3.44)
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In this formula we have emphasized with a subscript 0 the factthatΛ0 has zero ghost number. We
remark that (3.44) is the infinitesimal version of

Φ → eΛ0 (Q+ Ψ)eΛ0 (3.45)

In order to limit the complexity of the formulas we had betterfix this huge gauge freedom. This is
usually done by choosing the Siegel gauge, i.e. imposing theconditionb0|Ψ〉 = 0.

We will see that this works very well and, in fact, corresponds to the Lorenz gauge in the field
theory limit. Here we would like to point out, however, that it cannot be as easily implemented with
the Faddeev-Popov method as the Lorenz gauge in field theory,for it is reducible. If we change

Λ0 → Λ0 + Ψ⋆Λ−1+ Λ−1⋆Ψ

δΨ in (3.44) does not change ifQΨ+ Ψ⋆Ψ = 0. The same is true for any transformation

Λ−n → Λ−n + Ψ⋆Λ−n−1+(−1)nΛ−n−1 ⋆Ψ

where−n is the ghost number. Therefore, due to reducibility, the traditional FP method of in-
troducing 1= ∆FP(Φ)

∫

DΛδ (F (ΨΛ)), whereF(Ψ) = 0 is a linear gauge fixing, does not work
properly because it fixes the gauge freedom only partially. We need the BV approach.

The action (3.1) has indeed been quantized with the BV method. Choosing the Siegel gauge,
i.e. imposing the conditionb0|Ψ〉 = 0 to fix the enormous gauge symmetry (3.3), the kinetic term
becomes particularly simple and can be easily inverted to produce a free propagatorb0L−1

0 . This
allows one to define the perturbative series and relevant Feynman rules. 0-th and 1-st order am-
plitudes for tachyons have been computed. Putting the external legs on shell, they reproduce the
corresponding first quantized amplitudes, in particular the Veneziano amplitude. This is an impor-
tant check, but of course now one has an unambiguous way to compute off-shell expressions for
the amplitudes, virtually to any perturbative order. What is more important, one should remember
that the first quantized amplitudes are integrated over the moduli space of the appropriate Riemann
surfaces corresponding to the given perturbative order. Itis far from obvious a priori that the per-
turbative OSFT reproduces the same procedure. However one of the most remarkable results in
this context was the proof that it fully ‘covers’ the moduli space of Riemann surfaces and it does it
only once. This is in contrast to the analogous problem in closed string field theory, where a third
order interaction is not sufficient to cover the full moduli space, and one is obliged to introduce
higher order vertices.

In conclusion the OSFT introduced in this section reproduces the results of first quantized
string theory. Its added value with respect to the latter is not only that it allows us to compute off-
shell amplitudes, but especially that it puts us in the condition to tackle nonperturbative problems.
The first and up to now most remarkable result of SFT is the treatment oftachyon condensation.

4. The tachyon condensation

Following the rules of the previous section it is possible infavorable cases to explicitly com-
pute the action (3.1). For instance, in the low energy limit,where the string field may be assumed
to take the form (3.8), the action becomes an integrated function F of an infinite series of local

14
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polynomials (kinetic and potential terms) of the fields involved in (3.8). To limit the number of
terms one has to limit once again the gigantic BRST symmetry of OSFT, by choosing a gauge,
which is usually the Feynman–Siegel gauge: this means that we limit ourselves to the states that
satisfy the condition:b0|Ψ〉 = 0. As an example, let us write down the first few terms of the most
general string field

Ψ =
∫

d26k
(

φ̃(k)+ Ãµ(k)αµ
−1 + χ̃(k)b−1c0 + B̃µν(k)αµ

−1αν
−1 + . . .

)

c1|0;k〉 (4.1)

The Feynman–Siegel gauge eliminates theχ term. Still the action with all the infinite sets of fields
contained inΨ remains unwieldy. As it turns out, it makes sense to limit thenumber of fields inΨ,
provided we insert all the fields up to a certain level. This iscalled level truncationand turns out
to be an excellent approximation and regularization schemein SFT. Let us truncate the string field
and keep only the first two terms in the RHS. For instance, for the kinetic term of the action we get

1
2
〈V2|Ψ〉1|QΨ〉2 =

∫

d26k

(

φ̃(−k)
p2−1

2
φ̃ (k)+ Ãµ(−k)

p2

2
Aµ(k)+ . . .

)

Altogether, after Fourier anti-transforming, one obtains

S (Ψ) =
1
g2

o

∫

d26x

(

−1
2

∂µφ∂ µ φ +
1
2

φ2− 1
2

∂µAν∂ µAν − β 3

3
φ̂3

−β
2

(

∂µ∂ν φ̂ Âµ Âν + φ̂∂µÂν∂ν Âµ −2∂µ φ̂ ∂ν ÂµÂν)) (4.2)

where againβ = 3
√

3
4 . One can see the kinetic term and the ‘wrong’ mass term for thetachyon, as

well as the gauge-fixed kinetic term for the gauge field. The fields appearing in the interaction term
carry a hat. This means

f̂ (x) = e(lnβ)∂µ ∂ µ
f (x)

for any local fieldf . Incidentally, the fact that the interaction is formulatedin terms of hatted fields
is a manifestation of the strong (exponential) convergenceproperties of string theory in the UV.

We would like now to single out the potential in the action (4.2) and study its minimum. For
a static configuration the potential coincides with− the action. But this is not enough. We must
remember that this theory is supposed to represent the open strings attached to a space–filling D–
brane, the D25–brane. So the total energy is the sum of the brane energy plus the energy of the
string modes. The brane has its intrinsic energy, whose density is the tensionτ , which in our
conventional units (α ′ = 1), is given byτ = 1

2π2g2
o
. The string modes are represented by the action

and, as we have just said, in a static situation their total energy is given by− the action itself. We
wish to study this system in the vacuum. Lorentz invariance requires that only scalars can acquire
a VEV. Therefore in (4.2) one must set all the derivatives to 0. Setting〈φ〉 = t, what remains of the
action (divided by the total volume) can be written in terms of the functionu(t) as follows

− S
V

≡ τ u(t) = 2π2 τ ,

(

−1
2

t2 +
1
3

β 3t3
)

(4.3)

This is the total tachyon potential energy density extracted from the action. It is proportional to
(3.22).
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The total energy of the system will be given by the sum of (4.3)and the D25–brane tension

U(t) = τ(1+u(t)) (4.4)

This potential is cubic, it goes to+∞ for positive larget and to−∞ for negative larget and it has a
local maximum and and a local minimum, which are easily determined. The former is att = 0, the
latter is given by

t = t0 =
1

β 3 , u(t) ≈−0.684 (4.5)

Of course this is a first approximation result. Considering higher level scalar fields (there are
infinite many of them) the minimum will be modified. The numerical evaluations performed within
the level truncation scheme indicate that the true minimum of the potential corresponds tou = −1,
i.e. U = 0. This coincides with the first conjecture by Sen.

t

  t  o

U(t)

Figure 3: The tachyon potential

In order to describe the physics of tachyon condensation Sen[9] formulated three conjectures.
The first claims that at the minimum of the potential the theory must be stable, so the energy of
the space-filling brane must compensate exactly the energy of the strings. The second conjecture
concerns the features of the tachyon condensation vacuum: in this vacuum there cannot be open
string modes, i.e. it is the vacuum of an entirely different system, that of closed strings. The third
conjecture is a consequence of this statement: one should beable to find in the new vacuum the
physics of closed string theory1.

The numerical results mentioned above were the first evidence that Sen’s first conjecture is
correct. Also the other conjectures got support from numerical methods or via cousin theories,
such as BCFT. After this evidence the real challenge was to find a solution of the SFT equation of
motion. The turning point in this field came in 2005 with the first analytic tachyon vacuum solution
found by Schnabl [11].

1Often in the literature the second and third conjecture are called third and second, respectively. To me this seems
to be logically reversed.
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5. The analytic solution

The equation of motion derived from (3.1) is

QΨ+ Ψ∗Ψ = 0 (5.1)

In this section I will explain how the first analytic solutionof this equation was found, [11]. This
solution is a string state that specifies the (locally) stable vacuum, to be identified as the closed
string vacuum. In the oversimplified language of the figure (3) it would correspond to|Ψ0〉 =

t0c1|0〉, but it actually identifies the vev of all the infinite many scalar fields that feature in the most
general string field.

5.1 The new coordinate and the wedge states

The breakthrough was facilitated by an improvement in the mathematical language of SFT.
One can now say, in hindsight, that for many years any progress was thwarted by the complexity
of the star product. A simple change of geometrical perspective suddenly made everything easier,
the star algebra took up a very simple form (see below). The geometrical improvement consists in
the arctan map. This map

ξ (z) = arctan(z)

maps the unit semidisk in thez plane to the semi-infinite shaded area in theξ plane, see fig.4.
The complementary part of the semidisk in the upper halfz plane is mapped to the unshaded
semi-infinite rectangles on the two side of the latter, the two external sides being identified as
they correspond to the point at∞ in the UHP. The resulting figure is a semi-infinite cylinder of
circumferenceπ.

π− − ππ π /2/4/4/2

z ξ

−1 1

ξ(z)

Figure 4: The arctan map

The first simple application of this frame is to wedge states.Wedge states are particular surface
states. The latter are states defined as follows: take any mapf from the UHP to a Riemann surface
Σ, for instance the unit disk; we will denote byR the surfaceΣ minus the imageH of the unit
halfdisk in it. Let us consider any fieldφ and the state|φ〉 = φ(0)|0〉 in the Fock space of the
theory; then the surface state|S〉 is defined by

〈φ |S〉 = 〈I ◦ f ◦φ〉Σ (5.2)
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The definition is implicit and may seem at first not very handy,but one can reduce the calculation
to very simple test states|φ〉, much in the same way as we have done in calculating the Neumann
coefficients for the two and three strings vertices.

It follows that a surface state can be written as a squeezed state represented by a Neumann
matrix Sf

nm, both for the matter and the ghost part. For instance

|S〉 = e−
1
2 ∑m,n≥1 α†

nSf
mnα†

n |0〉 (5.3)

where

Sf
mn = − 1

mn

∮

dz
2π i

1
zn

∮

1
2π i

1
wm∂z∂w ln( f (z)− f (w)) (5.4)

The star product of two surface states has a simple geometrical interpretation. As we have seen,
we associate to each state a unit disk with the image of the unit semidisk and the complementary
R patch in it. Remove the patchR2 from the unit diskΣ2 associated to the second state, cutΣ1

along the right half string in the boundary ofH1 and glue it with the left half string ofH2. The
right half string ofH2 is glued toR1 in such a way to form a new unit disk. The resulting surface
(and map) defines the star product

Wedges states are particularly simple. Their defining functions are

fr(z) = tan

(

2
r

arctan(z)

)

= h−1
(

h(z)
2
r

)

(5.5)

where, for simplicity, we taker to be a positive integer. This map first rotates the unit semidisk
anticlockwise by 90o (see the right hand side of fig.1), then shrinks it to a wedge ofangle2π

r , finally
rotates it back clockwise by 90o. Instead of usingfr , which maps to the UHP, we can stop midway
at w = h(z)

2
r , which maps to a wedge in the unit disk in thew plane. Usingw = h(z)

2
r it is easy to

compute the Neumann matrix of any wedge state.
The star product of wedge states is characterized by an elemenary recursion relation

|r〉⋆ |s〉 = |r +s−1〉 (5.6)

In particular we see that calling|Ξ〉 the result of takingr → ∞ in |r〉, we recoverΞ2 = Ξ. This may
seem formal, but it can be shown to give rise precisely to the sliver, which is a surface state defined
by a wedge of vanishing angle (see below for a more accurate definition). So, in particular, wedge
states approximate the sliver.

The star product of wedge states takes a particularly simpleform in the arctan frame. In this
new representation a wedge state|r〉 is represented by a cylinder in theξ UHP of circumference
πr
2 , see fig.5. It is in fact an infinite strip in the imaginary direction of width r π

2 . It is formed by
two external strips of widthπ

4 each (the ruled strips in the figure), and an internal strip ofwidth
(r −1)π

2 . The rightmost and leftmost sides are identified so as to forma cylinder. The star product
of two such states is simply obtained by dropping the rightmost ruled strip of the first state and the
leftmost ruled strip of the second and gluing the two cut cylinders along the dashed line in fig.5. In
this language the wedge state withr = 2 corresponds to the vacuum|0〉 and the state withr = 1 to
the identity state|I〉.
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Figure 5: Star product of two wedge states|3〉⋆ |2〉= |4〉

Pure wedge states, as we have just described them, are not enough to describe the analytic
solution we are looking for. Later on we will need wedge states with insertion of operators in the
real diameter of the halfdisk, that is wedge states with the insertion of an operator at some point of
the unruled patches. The|n〉 wedge state itself can be seen as such.

|n〉 =

(

2
n

)L
†
0

|0〉 (5.7)

whereL0 will be introduced in a moment.
These states will play a major role in what follows. What we need now is exploit the new

coordinateξ = arctanz to get a few basic definitions and relations. If we map a primary operator
Oh of weighth to the arctan frame we have

Õ
h(ξ ) = f ′(ξ )h

O
h(z), z= f (ξ ) = tan(ξ )

The corresponding modes in the expansionOh(z) = ∑nOh
nz−n−h will transform according to

Õ
h
n = ∑

m

∮

dz
2π i

ξ (z)n+h−1( f ′(ξ (z))h−1z−m−h (5.8)

For instance, denoting withLn the Virasoro generators in the arctan frame, we get

Ln =

∮

dz
2π i

(1+z2)(arctan(z))n+1 T(z) (5.9)

In particular

L−1 = L1 +L−1 ≡ K1 (5.10)

L0 = L0 +
∞

∑
k=1

2(−1)k+1

4k2−1
L2k (5.11)

They satisfy[Ln,Lm] = (n−m)Ln+m. The central charge is obviously zero because we are in
critical dimensions.

The hermitean conjugates ofLn are

L
†
n =

∮

dz
2π i

(1+z2)(arccot(z))n+1T(z) (5.12)
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A remarkable commutator is

[L0,L
†
0 ] =

∮

dz
2π i

(1+z2)(arctan(z)+arccot(z))T(z) = L0 +L
†
0 (5.13)

We have

arctan(z)+arccot(z) =

{

−π
2 ℜ(z) < 0

π
2 ℜ(z) > 0

(5.14)

This function has a branch cut along the imaginary axis from−i to i due to arctan(z) and a branch
cut from i to +∞ and from−i to −∞ due to arccot(z). The step function (5.14) suggests that we
split the integration contour in left and right part, as in fig.6. That is we can write

CLCR

i

−i
.

.

Figure 6: Star product of two wedge states|3〉⋆ |2〉= |4〉

L̂0 = L0 +L
†
0 =

π
2

(

KL
1 −KR

1

)

(5.15)

where

KL,R
1 =

π
2

∫

CL,R

dz
2π i

(1+z2)T(z) (5.16)

These objects have remarkable properties

[L0,L̂0] = L̂0, [L0,L−1] = L−1 (5.17)

and, due to the contours where they are defined,KL,R
1 are left(right) derivations with respect to the

star product

KL
1 (Ψ⋆Φ) = (KL

1 Ψ)⋆Φ, KR
1 (Ψ⋆Φ) = Ψ⋆ (KR

1 Φ)
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In other wordsKL
1 does not ‘feel’ the right hand part of the string; the opposite forKR

1 (the left and
right part are defined by looking from the point+i∞ in the arctan frame). Here are more explicit
expressions forKL,R

1

KL
1 =

1
2

K1+
1
π

(

L0 +L
†
0

)

KR
1 =

1
2

K1−
1
π

(

L0 +L
†
0

)

whereK1 = L1 +L−1.
Since in critical dimensions the ghost fieldb(z) has the same conformal properties asT(z), we

can introduces quantitiesB0,B1,BL
1,B

R
1 analogous toL0,K1,KL

1 ,KR
1 :

B0 = b0 +
∞

∑
k=1

2(−1)k+1

4k2−1
b2k

B1 = b1 +b−1

and

BL
1 =

1
2

B1+
1
π

(

B0 +B
†
0

)

BR
1 =

1
2

B1−
1
π

(

B0 +B
†
0

)

BL
1 (BR

1) are also left (right) derivation with respect to the star product.
By denoting ˜c the ghost field in the arctan frame ( ˜c(ξ ) = 1

1+z2 c(z)) one can demonstrate the
following commutators

[Q,BL
1] = KL

1 , [Q,KL
1 ] = 0, [BL

1,K
L
1 ] = 0

[KL
1 , c̃] = ∂̃ c̃, [BL

1, c̃(ξ )] = θ(ξ ), [Q, c̃] = c̃∂̃ c̃ (5.18)

whereθ represents the step function.
Using these new symbols the wedge states can be written, beside (5.7), also as

|n〉 = e
π
2 (n−1)KL

1 |I〉 (5.19)

From this equation and (5.7) we see that it makes sense to consider n a real variable, and therefore
also to differentiate with respect to it. We can also interpret (5.19) by saying thatKL

1 acting on|I〉
generate a cylinder of lengthnπ

2 .

5.2 The solution

To appreciate the subsequent solutions it is useful to consider first pure gauge solutions. A
pure gauge solution can be written

Ψg = Γ−1(Λ)QΓ(Λ) (5.20)

whereΓ is an invertible expression of the gauge parameterΛ, for instance

Γ(Λ) =
1

1−λΛ
= ∑

n≥0

λ nΛn (5.21)

21



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
0
1

Introduction to SFT Loriano Bonora

with λ a numerical parameter. Then one can write

Ψg = (1−λΛ)Q
1

1−λΛ
=

∞

∑
n=1

λ nψn, ψn = (QΛ)Λn−1 (5.22)

Now if the series is convergent one has

∂λ S∼ 〈∂λ Ψg(QΨg + Ψ2
g)〉 = 0

for λ = 0, sinceΨg(λ = 0) = 0. ThusS= 0 for anyλ , becauseQΨg+Ψ2
g = 0. Therefore the energy

of this solution vanishes, because for a static solution theenergy coincides with the negative of the
action.

However, as it turns out, the series (5.21) may not converge for λ = 1 and the correspondingΓ
may not be interpretable as a gauge transformation. Schnabl’s solution was constructed exploiting
this fact. First of all the gauge fixing isB0|Ψ〉 = 0, rather than the Feynman–Siegel one. Then one
choosesΛ = BL

1c1|0〉. After some calculations one finds

ψn = (QΛ)Λn−1 = c1|0〉⋆KL
1 BL

1|n−1〉⋆c1|0〉 =
d
dn

φn−1, (5.23)

where

φn = c1|0〉⋆BL
1e

π
2 (n−1)KL

1 |I〉⋆c1|0〉

prime denotes derivative with respect ton. The stateψn is made out of wedges states with insertions
of the fieldc and ofB. In particular forn = 0 we have

ψ0 = (cBL
1c)(0)|0〉, ψ ′

0 = (cBL
1KL

1 c)(0)|0〉

Finally the solution is

Ψ = lim
N→∞

(

N

∑
n=0

ψ ′
n−ψN

)

(5.24)

The second term−ψN is added only for regularization purposes.

5.3 Sen’s first and second conjectures

From the equation of motion we get

〈Ψ,QΨ〉 = −〈Ψ,Ψ⋆Ψ〉 (5.25)

This equation has to be explicitly checked over the solution(5.24) – a rather nontrivial task –,
because one of the subtleties of SFT is that, even if|Ψ〉 is a solution to the equation of motion, it is
not automatically guaranteed that (5.25) holds.

On the other hand, from the explicit form of the solution one gets

〈Ψ,QΨ〉 = − 3
π2

22



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
0
1

Introduction to SFT Loriano Bonora

Therefore, finally, the total energy of the string modes is (V is the total 26–th dimensional volume):

E = − S
V

=
1

g2
oV

(

1
2
〈Ψ,QΨ〉+ 1

3
〈Ψ,Ψ⋆Ψ〉

)

= − 1

2π2g2
0

(5.26)

which is precisely the negative of the D25–brane tensionτ .
Let us now pass to briefly illustrate the proof of the second conjecture [12]. The purpose is to

show that the cohomology about Schnabl’s solution is trivial. Relabeling Schnabl’s solution asΨ0,
we are looking now for solutions to (5.1) of the typeΨ0 + ψ , linearized onψ . It is easy to see that
the relevant (linearized) equation of motion is

Qψ ≡ Qψ + Ψ0 ⋆ψ − (−1)|ψ |ψ ⋆Ψ0 (5.27)

This defines a new BRST operatorQ (indeedQ2 = 0) and defines the cohomology around Schn-
abl’s solution. The purpose is to prove that this cohomologyis empty.

Let us introduce the symbol

Wr = |r +1〉

and define the state

A = − 2
π

B
∫ 1

0
Wr dr (5.28)

Here we make use of the fact that wedge states can be defined forany real labelr, not just for an
integralr. It is possible to prove that

QA = |I〉 (5.29)

where the RHS represents the identity state.
Now suppose thatψ satisfiesQψ = 0. Then, using the previous results, we get

Q(A⋆ψ) = (QA)⋆ψ −A⋆ (Qψ) = |1〉⋆ψ = ψ

which means thatψ is BRST trivial. This is a very general result. It implies notonly that the
cohomology of ghost number 1 is trivial (i.e., there is no physical perturbative string mode in the
new vacuum), but that the cohomology is trivial for any ghostnumber state.

5.4 Another analytic tachyon vacuum solution

After the first solution presented above another analytic solution was subsequently found by
Erler and Schnabl. This second solution is simpler and opened the way to new developments. For
this reason I will describe it in detail. First of all I will introduce a new tool, theK,B,c algebra,
whose simplifying virtues will be evident in a moment.

Let us introduce the symbolsK,B,c which are obtained by acting withKL
1 ,BL

1 and the fieldc
on the identity state|I〉:

K =
π
2

KL
1 |I〉, B =

π
2

BL
1|I〉, c = c

(

1
2

)

|I〉, (5.30)
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They obey the remarkably simple algebra

[K,B] = 0, [K,c] = ∂c, {B,c} = 1, {B,∂c} = 0 (5.31)

where the product is understood to be the star product and 1 represents|I〉. In this algebraQ
operates as follows

QB= K, Qc= c∂c (5.32)

It is also useful to recall that|I〉 = e−
π
2 KL

1 |0〉, so that|0〉 = eK .
The Erler-Schnabl, [13], solution (ES) is constructed by fully exploiting the simplicity of this

algebra with operators. The ansatz is

ψ0 =
1

1+K
c(1+K)Bc= c− 1

1+K
Bc∂c, (5.33)

Since, using theK,B,c algebra, it is easy to show that

QΨ0 = cKc
1

K +1
and ψ0ψ0 = −cKc

1
K +1

it is obvious thatψ0 is a solution to (5.1).
The energy of this solution turns out to be the correct one (1st conjecture)

E = − S
V

=
1

g2
oV

(

1
2
〈Ψ,QΨ〉+ 1

3
〈Ψ,Ψ⋆Ψ〉

)

= − 1

2π2g2
0

(5.34)

It is also possible to define a homotopy operatorA = B
K+1, which satisfies the propertyQA = 1,

where as above

Qψ ≡ Qψ + Ψ0 ⋆ψ − (−1)|ψ |ψ ⋆Ψ0

is the BRST operator at the tachyon vacuum. As we saw above, this implies that the cohomology
around the tachyon vacuum is trivial (2nd conjecture).

It is instructive to compute the energy of the ES solution. Using the equation of motion and
the Schwinger representation

1
K +1

=
∫ ∞

0
dt e−t(K+1) (5.35)

we have

E[ψ0] =
1
6
〈ψ0,Qψ0〉 =

1
6
〈(c+cKBc)

1
K +1

cKc
1

K +1
〉 (5.36)

=
1
6

∫ ∞

0
dt1dt2e−t1−t2

(

〈ce−t1KcKce−t2K〉Ct1+t2
−〈Q

(

Bce−t1KcKce−t2K)〉Ct1+t2

)

The second term vanishes because it is BRST exact. The first can be rewritten

〈ce−t1KcKce−t2K〉Ct1+t2
= 〈e−(t1+t2)Kc(t1 + t2)cKc(t2)〉Ct1+t2

(5.37)
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To evaluate this we have to start from the corresponding correlator in the UHP and lift it to the
arctan frame. In the UHP we have

〈c(z1)c∂c(z2)〉UHP = −(z1−z2)
2

Mapping it to the cylinderCπ with the mapz→ ξ = arctan(z) this becomes

〈c̃(ξ1) c̃∂̃ c̃(ξ2)〉Cπ (5.38)

Mapping this to a cylinder of lengthℓ, i.e. ξ → ℓ
π ξ andc̃→ ĉ, one gets

〈ĉ(ξ1) ĉ∂̂ ĉ(ξ2)〉Cℓ
=

(

ℓ

π

)2

sin2
(

π
ξ1−ξ2

ℓ

)

from which

E[Ψ0] = −1
6

∫ ∞

0
dt1dt2e−t1−t2 (t1− t2)2

π2 sin2
(

πt1
t1 + t2

)

follows. The integration is elementary and one finally obtains (5.34).
It should be noticed that also the ES solution can be formallyregarded as a pure gauge solution

since

Ψ0 = UQU−1, U = 1− 1
K +1

Bc, U−1 = 1+
1
K

Bc

However the state1K is singular due to the zero mode ofKL
1 .

6. The third conjecture and the lump solutions

The third conjecture predicts in particular the existence of lower dimensional solitonic solu-
tions or lumps, interpreted as Dp–branes, withp < 25. These solutions yield the breaking of trans-
lational symmetry and background independence. The evidence for the existence of such solutions
collected in the past years is overwhelming. It has been possible to find them with approximate
methods or with exact methods in related theories. In the sequel I will present a recently proposed
explicit example of analytic lump solution in OSFT.

6.1 Analytic lump solutions

In a recent paper[14], a general method has been proposed to obtain new exact analytic solu-
tions in open string field theory, and in particular solutions that describe inhomogeneous tachyon
condensation. The method consists in translating an exact renormalization group (RG) flow gener-
ated in a two–dimensional world–sheet theory by a relevant operator, into the language of OSFT.
The so-constructed solution is a deformation of the ES solution described above. It has been shown
in [14] that, if the operator has suitable properties, the solution will describe tachyon condensation
in specific space directions, thus representing the condensation of a lower dimensional brane. In
the following, after describing the general method, we willfocus on a particular solution, gener-
ated by an exact RG flow first analyzed by Witten[15]. On the basis of the analysis carried out in

25



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
0
1

Introduction to SFT Loriano Bonora

the framework of 2D CFT in [16], we expect it to describe a D24-brane, with the correct ratio of
tension with respect to the starting D25 brane.

Let us see first the general recipe to construct such kind of lump solutions. To start with we
enlarge theK,B,c algebra by adding a (relevant) matter operator

φ = φ
(

1
2

)

|I〉. (6.1)

with the properties

[c,φ ] = 0, [B,φ ] = 0, [K,φ ] = ∂φ , Qφ = c∂φ + ∂cδφ . (6.2)

It can be easily proven that

ψφ = cφ − 1
K + φ

(φ −δφ)Bc∂c (6.3)

does indeed satisfy (formally, see below) the OSFT equationof motion

Qψφ + ψφ ψφ = 0 (6.4)

It is clear that (6.3) is a deformation of the Erler–Schnabl solution, which can be recovered for
φ = 1.

After some algebraic manipulations one can show that

Qψφ

B
K + φ

= Q
B

K + φ
+

{

ψφ ,
B

K + φ

}

= 1.

So, unless the string fieldB
K+φ is singular, it defines a homotopy operator and the solution has

trivial cohomology, which is the defining property of the tachyon vacuum [12]. On the other hand,
in order for the solution to be well defined, the quantity1K+φ (φ − δφ) should be well defined.
Moreover, in order to be able to show that (6.3) satisfies the equation of motion, one needsK + φ
to be invertible.

In full generality we thus have a new nontrivial solution if

1. 1
K+φ is in some sense singular, but

2. 1
K+φ (φ −δφ) is regular and

3. 1
K+φ (K + φ) = 1

These conditions seem to be hard to satisfy: for instance,K + φ may not be invertible, one needs
a regularization. It is indeed so without adequate specifications. This problem was discussed in
[17, 19], where it was shown that the right framework is distribution theory, which guarantees not
only regularity of the solution but also its ’non-triviality’, in the sense that if these conditions are
satisfied, it cannot fall in the same class as the ES tachyon vacuum solution.

For concreteness we parametrize the worldsheet RG flow, referred to above, with a parameter
u, whereu = 0 represents the UV andu = ∞ the IR, and labelφ by φu, with φu=0 = 0. Then we
require forφu the following properties under the coordinate rescalingft(z) = z

t

ft ◦φu(z) =
1
t

φtu

(z
t

)

. (6.5)
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We will consider in the sequel a specific relevant operatorφu and the corresponding SFT
solution. This operator generates an exact RG flow studied byWitten in [15], see also [16], and is
based on the operator (defined in the cylinderCT of width T in the arctan frame)

φu(s) = u(X2(s)+2 lnu+2A) (6.6)

whereA is a constant. On the unit diskD we have

φu(θ) = u(X2(θ)+2 ln
Tu
2π

+2A) (6.7)

If we set

gA(u) = 〈e
− 1

2π
∫ 4π

0 dθ u

(

X2(θ )+2ln u
2π +2A

)

〉D

we get

gA(u) = Z(2u)e−2u(ln u
2π +A) (6.8)

whereZ(u) is the partition function of the system on the unit disk computed by[15]. Requiring
finiteness foru→ ∞ one getsA = γ −1+ ln4π, which implies

gA(u) ≡ g(u) =
1

2
√

π
√

2uΓ(2u)e2u(1−ln(2u)), lim
u→∞

g(u) = 1 (6.9)

Moreover, as it turns out,φu−δφu = u∂uφu(s)
The φu just introduced satisfies all the requested properties. According to [16], the corre-

sponding RG flow in BCFT reproduces the correct ratio of tension between D25 and D24 branes.
Consequentlyψu ≡ ψφu is expected to represent a D24 brane solution.

In SFT the most important gauge invariant quantity is of course the energy. Therefore in order
to make sure thatψu ≡ ψφu is the expected solution we must prove that its energy equalsa D24
brane energy.

The energy expression for the lump solution was determined in [14] by evaluating a three–
point function on the cylinderCT . It equals−1

6 times the following expression

〈ψuψuψu〉 = −
∫ ∞

0
dt1dt2dt3E0(t1, t2, t3)u

3g(uT)

{

(

− ∂2uTg(uT)

g(uT)

)3

+
1
2

(

− ∂2uTg(uT)

g(uT)

)(

G2
2uT(

2πt1
T

)+G2
2uT(

2π(t1 + t2)
T

)+G2
2uT(

2πt2
T

)
)

+G2uT(
2πt1

T
)G2uT(

2π(t1 + t2)
T

)G2uT(
2πt2
T

)

}

(6.10)

HereT = t1 + t2 + t3 andg(u) is as above, whileGu(θ) represents the boundary-to-boundary cor-
relator first determined by Witten[15]:

Gu(θ) =
1
u

+2
∞

∑
k=1

cos(kθ)

k+u
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Finally E0(t1, t2, t3) represents the ghost three–point function inCT .

E0(t1, t2, t3) = 〈Bc∂c(t1 + t2)∂c(t1)∂c(0)〉CT
= − 4

π
sin

πt1
T

sin
π(t1 + t2)

T
sin

πt2
T

A remarkable property of (6.10) is that it does not depend onu. In fact u can be absorbed in a
redefinition of variablesti → uti , i = 1,2,3, and disappears from the expression.

The integral in (6.10) is well defined in the IR (s very large, settings= 2uT) but has an UV
(s≈ 0) singularity, which must be subtracted away. Once this done, the expression (6.10) can
be numerically computed, the result being≈ 0.069. This is not the expected result, but this is not
surprising, for the result depends on the UV subtraction we have made. Therefore we cannot assign
to it any physical significance. To get a meaningful result wemust return to the very meaning of
Sen’s third conjecture, which says thatthe lump solution is a solution of the theory on the tachyon
condensation vacuum. Therefore we must measure the energy of our solution with respect to
the tachyon condensation vacuum. Simultaneously the resulting energy must be a subtraction-
independent quantity because only to a subtraction-independent quantity can a physical meaning
be assigned. Both requirements have been satisfied in [17] inthe following way.

First a new solution to the EOM, depending on a parameterε , has been introduced

ψε
u = c(φu + ε)− 1

K + φu + ε
(φu + ε −δφu)Bc∂c. (6.11)

in the limit ε → 0. This limit will be mostly understood from now on. The energy of (6.11) (after
the same UV subtraction as in the previous case) is (numerically) 0. Since (unlike the previous
case) the presence of the parameterε prevents the IR transition to a new critical point, it is sensible
to assume that limε→0ψε

u represents the tachyon condensation vacuum solution. In other words it is
gauge equivalent to the ES, solution. Using it,a solution to the EOM at the tachyon condensation
vacuumhas been obtained. The equation of motion at the tachyon vacuum is

QΦ+ ΦΦ = 0, whereQΦ = QΦ+ ψε
uΦ+ Φψε

u . (6.12)

One can easily show that

Φ0 = ψu−ψε
u (6.13)

is a solution to (6.12). The action at the tachyon vacuum is−1
2〈QΦ,Φ〉 − 1

3〈Φ,ΦΦ〉. Thus the
energy ofΦ0 is

E[Φ0] = −1
6
〈Φ0,Φ0Φ0〉

= −1
6

[

〈ψu,ψuψu〉− 〈ψε
u ,ψε

uψε
u〉−3〈ψε

u ,ψuψu〉+3〈ψu,ψε
uψε

u〉
]

. (6.14)

The UV subtractions necessary for each correlator at the RHSof this equation are always the
same, therefore they cancel out and the final result is subtraction-independent. A final bonus of
this procedure is that the final result can be derived purely analytically andE[Φ0] turns out to be
precisely the D24-brane energy. With the conventions of [17], this is

TD24 =
1

2π2 (6.15)

In [18] the same result was extended to Dp-brane lump solutions for anyp.
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7. Comments

The three conjectures formulated by Ashoke Sen about fifteenyears ago have been demon-
strated beyond doubt in the framework of Witten’s OSFT. Thisis certainly a remarkable result, but
from the point of view of OSFT it is only a beginning. The correctness of the three conjectures
confirms that open string theory knows about closed string theory. As anticipated in the introduc-
tion this was somehow expected. Even the first quantized openstring theory contains at one loop
information about the closed string spectrum. However whatwe have learnt from OSFT is much
richer information. Even at the classical level (tree levelof the perturbative expansion) [10], pro-
vided we consider exact analytic solutions (which correspond to specific boundary CFT’s, i.e. full
expansions in theα ′ parameter), we can get information about closed string theory. The question
is now how rich and complete this information is. The exampleof AdS/CFT suggests that open
and closed strings are two different description of the sameunderlying physics. On the other hand,
the study of string field theory seems to suggest that there issome asymmetry between the two
descriptions. If field theory is the right language for physics the open string description is favored.
OSFT seems to respond to the best expectations and the exciting questions we are left with at the
end of this exposition are: how far can we go in the description of closed string theory by means
of open strings? is there a way, for instance, to represent black holes in the open string theory lan-
guage? Even more important, can we recognize in this language bosonized solutions representing
fermions? It is clear however that this is possible only if inthe solutions we insert matter, as was
done in the last section. Without it the spectrum of solutions that we obtain is too poor.
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