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1. Introduction

Rotational submanifolds play an important role at submanifolds theory of riemannian mani-

folds (see, for example, [1] and [2]). They also play an important role at the study of marginally

trapped surfaces which, by their turn, are important to study black roles (see [3] and [4]).

There are lots of definitions of rotational submanifolds: rotational submanifolds in R
n (see

[5]), rotational hypersurfaces in constant curvature spaces (see [1]), rotational hypersurfaces in

S
n ×R and H

n ×R in (see [6]), and other definitions. But constant curvature spaces, Sn ×R and

H
n ×R are submanifolds of pseudo-euclidean spaces, therefore, it is possible to use one definition

which will serve at all theses cases, we just have to define rotational submanifolds in pseudo-

euclidean spaces.

In order to define rotational submanifolds in pseudo-euclidean spaces, some notations are used.

A pseudo-euclidean space R
n
t , t ≤ n, is the vector space R

n together with the inner product given

by

〈x,y〉 :=−
t

∑
i=1

xiyi +
n

∑
i=t+1

xiyi,

where x = (x1, · · · ,xn), y = (y1, · · · ,yn) and the symbol ":=" means "equal by definition". We are

going to use the following definitions:

‖x‖2 := 〈x,x〉 ;

S
n :=

{

x ∈R
n | ‖x‖2 = 1

}

;

S
n(p,r) :=

{

x ∈ R
n
t | ‖x− p‖2 = r2

}

;

S
n(p,−r) :=

{

x ∈R
n
t | ‖x− p‖2 =−r2

}

;

H
n := {x ∈ S

n(0,−1) | x1 > 0} ;

L :=
{

x ∈ R
n
t | ‖x‖2 = 0

}

, is the light cone;

L
∗ :=

{

x ∈ R
n
t | ‖x‖2 = 0 and x 6= 0

}

, is the light cone without the origin.

Let x ∈ R
n
t . We say that x is: spacelike, if ‖x‖2 > 0; timelike, if ‖x‖2 < 0; or lightlike, if

‖x‖2 = 0. Given V ⊂ R
n
t a vector subspace, we say that V is:

• spacelike, if every vector of V is spacelike;

• timelike, if there is a basis of V in which the inner product of two vectors of V can be written

like

〈v,w〉=−
s

∑
i=1

viwi +
m

∑
i=s+1

viwi,

where s ≤ t and m ≤ n;

• lightlike, if the inner product in V is degenerated.

Let Rn−q−1 a vector subspace of Rn
t , with 1 ≤ q ≤ n− 2. Lets denote the group of all linear

isometries of Rn
t by Ot(n) and by O(q+1) the subgroup of Ot(n) which fixes every point of Rn−q−1.

Definition 1. Let Rn−q be a vector subspace of Rn
t and f : Nm−q → R

n−q be an immersion such

that Rn−q−1 ⊂ R
n−q and f (N)∩R

n−q−1 = ∅. The rotational submanifold with axis Rn−q−1 on f

is the union of the orbits of points of f (N) under the action of the group O(q+1), ie., it is the set

{A( f (x)) | x ∈ N and A ∈ O(q+1)} .
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In the euclidean case (Rn
t = R

n), the above definition is the same given in [5]. A more general

definition for the euclidean case can be found in [7].

Our first objective is to prove the following proposition:

Proposition 2. Let Rn−q−1 ⊂ R
n−q be two vector subspaces of Rn

t and f : Nm−q → R
n−q an im-

mersion such that f (N)∩R
n−q−1 = ∅. Let also M be a rotational submanifold on f , with axis

R
n−q−1.

1. Lets suppose that Rn−q−1 has index s (ie. R
n−q−1 = R

n−q−1
s ), R

q+1
t−s :=

(

R
n−q−1
s

)⊥
and

π : Rn
t → R

n−q−1
s is the orthogonal projection of Rn

t = R
q+1
t−s kR

n−q−1
s on R

n−q−1
s .

(a) If Rn−q has index s (Rn−q = R
n−q
s ), lets consider S(0,1) ⊂ R

q+1
t−s and X1 ∈ R

n−q
s ∩

(

R
n−q−1
s

)⊥
a unit spacelike vector. In this case, we can define M̄ and g : N×S(0,1)→

M̄ by

M̄ := { f1(x)ξ +π( f (x)) | x ∈ N and ξ ∈ S(0,1)} and g(x,ξ ) := f1(x)ξ +π( f (x)),

where f1(x) := 〈 f (x),X1〉.

(b) If Rn−q = R
n−q
s+1 , lets consider S(0,−1) ⊂ R

q+1
t−s and X1 ∈ R

n−q
s+1 ∩

(

R
n−q−1
s

)⊥
a unit

timelike vector. In this case, we can define M̄ and g : N ×S(0,−1)→ M̄ by

M̄ := { f1(x)ξ +π( f (x)) | x ∈ N and ξ ∈ S(0,−1)} and g(x,ξ ) := f1(x)ξ +π( f (x)),

where f1(x) :=−〈 f (x),X1〉.

(c) If Rn−q is lightlike, lets consider L ∗ ⊂ R
q+1
t−s and X1 ∈ R

n−q ∩
(

R
n−q−1
s

)⊥
a lightlike

vector. In this case, we can define M̄ and g : N ×L ∗ → M̄ by

M̄ := { f1(x)ξ +π( f (x)) | x ∈ N and ξ ∈ L
∗} and g(x,ξ ) := f1(x)ξ +π( f (x)),

where f1(x) is the component of f (x) in the X1 direction, ie., f (x) = f1(x)X1+π( f (X)).

2. Let suppose that Rn−q−1 is lightlike and there are non-degenerated vector subspaces U,V ⊂

R
n
t and lightlike vectors X1 and X2 such that 〈X1,X2〉 = 1, Rn−q−1 = span{X2}k U and

R
n
t = span{X1,X2}kU kV . In this case, let π : span{X1}⊕V ⊕R

n−q−1 → R
n−q−1 be the

projection application.

(a) If Rn−q = span{X1,X2}kU, lets define M̄ and g : N ×V → R
n
t by

M̄ :=

{

f1(x)

(

X1 + v−
‖v‖2

2
X2

)

+π( f (x))

∣

∣

∣

∣

x ∈ N and v ∈V

}

and

g(x,v) := f1(x)

(

X1 + v−
‖v‖2

2
X2

)

+π( f (x)),

where f1(x) = 〈 f (x),X2〉.

3
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(b) If Rn−q = span{w,X2}kU, where w ∈V is a unit vector, lets consider ε := ‖w‖2 and

S(0,ε)⊂V and we can define M̄ and g : N ×S(0,ε)×R→ R
n
t by

M̄ := { f1(x)(λX2 +ξ )+π( f (x)) | x ∈ N, ξ ∈ S(0,ε) and λ ∈ R} and

g(x,ξ , ł) := f1(x)(λX2 +ξ )+π( f (x)),

where f1(x) = ε 〈 f (x),w〉.

In any of the above cases, M = M̄. Furthermore, in the cases (I.1), (I.2) and (II.1), g is an

immersion. With the hypothesis that N is a riemannian manifold and f is an isometric immersion,

g is also an immersion in the cases (I.3) and (II.2).

This proposition studies some of the possible cases for rotational submanifolds in R
n
t , but

there are some other cases which were not studied, for example, the case in which R
n−q−1 =

R
n−q−1−ℓ
s k span{v1, · · · ,vℓ}, where v1, · · · , vℓ are orthogonal lightlike vectors. Besides that, if

t = 1, that is, Rn
t = L

n is the Lorentz space, then Proposition 2 is enough.

Corollary 3. Proposition 2 classifies all rotational submanifolds in L
n on an immersion f , accord-

ing to the codomain of f and to the rotational axis.

Once we have proved those results, we want to show another one but, first, we need some

definitions.

Let Mm
s and Nn

t be two pseudo-riemannian manifolds and f : Mm
s → Nn

t an isometric immer-

sion. Given a vector η ∈ T⊥
x M, it’s conformal nullity subspace is given by

Eη(x) := {X ∈ TxM | α (X ,Y ) = 〈X ,Y 〉η , ∀Y ∈ TxM} .

We say that η ∈ Γ
(

T⊥M
)

is a principal normal if dimEη(x)≥ 1, for all x ∈ M. If η is a principal

normal, Eη has constant dimension and η is parallel in the normal connection of f along Eη , then

η is called a Dupin normal of f . In this case, the number dimEη is the multiplicity of η .

A distribution D in a riemannian manifold Mn is umbilical if there exists a vector field

ϕ ∈ Γ
(

D⊥
)

such that ∇h
XY = 〈X ,Y〉ϕ , for all X and all Y in Γ(D), where ∇h

XY is the orthogo-

nal projection of ∇XY on D⊥. The vector ϕ is called mean curvature vector of the umbilical

distribution D . If D is umbilical and it’s mean curvature vector is null (ϕ ≡ 0), then D is called

totally geodesic. D is called spherical if D is umbilical and ∇h
X ϕ = 0, for every X ∈ Γ(D).

Our main result is the following theorem, which generalizes a similar theorem made in [5] for

the euclidean case:

Theorem 1. Let Mm be a riemannian manifold, f : Mm → R
n
t an isometric immersion and η a

Dupin normal of f with multiplicity q and such that η 6= 0 in every point of M. If E⊥
η is totally

geodesic, then there exists a rotational immersion g such that f (M) is a subset of the image of g.

Furthermore, we have one of the following cases:

1. There is an orthogonal decomposition R
n
t = R

q+1 k R
m−q−1
t such that g : Nm−q × S

q →

R
q+1 kR

n−q−1
t is given by

g(x,y) = p+ r(x)y+h(x),

where p ∈ R
n
t is a fixed point, r(x) > 0, r(x)y ∈ R

q+1, h(x) ∈ R
n−q−1
t and R

n−q−1
t is the

rotational axis.

4
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2. There is an orthogonal decomposition R
n
t =L

q+1 kR
n−q−1
t−1 such that g : Nm−q×S(0,−1)→

L
q+1 kR

n−q−1
t−1 is given by

g(x,y) = p+ r(x)y+h(x),

where p ∈ R
n
t is a fixed point, S(0,−1) ⊂ L

q+1, r(x) > 0, r(x)y ∈ L
q+1, h(x) ∈ R

n−q−1
t−1 and

R
n−q−1
t−1 is the rotational axis.

3. There are lightlike vectors e1,e2 ∈R
n
t and an orthogonal decomposition R

n
t = span{e1,e2}k

R
q kR

n−q−2
t−2 such that 〈e1,e2〉= 1 and g : Nm−q×R

q → R
n
t is given by

g(x,y) = q+g1(x)e1 +

[

g2(x)−g1(x)
‖y‖2

2

]

e2 +g1(x)y+g3(x),

where q ∈ R
n
t is a fixed point, g1(x) > 0, g3(x) ∈ R

n−q−2
t−s−2 and span{e2}k R

n−q−2
t−2 is the

rotational axis.

In [9], this theorem is used to to show that some umbilical submanifolds of a product of two

constat curvature spaces are rotational submanifols in R
N
t .

2. Proof of Proposition 2 and Corollary 3

Let L ∗ be the light cone without the null vector (origin).

Proof of the cases (I) of the Proposition 2.

Let M := {A( f (x)) | x ∈ N and A ∈ O(q+1)} be a rotational submanifold on f . We have to

show that M = M̄ and that g is an immersion.

(I.1) : Let Rn−q = R
n−q
s . Since R

n−q−1
s is a vector subspace of R

n−q
s , there exists a unit spacelike

vector X1 ∈ R
n−q
s ∩

(

R
n−q−1
s

)⊥
. Thus, f (x) = f1(x)X1 +π( f (x)), where f1(x) := 〈 f (x),X1〉.

Affirmation 1: M ⊂ M̄.

If A ∈ O(q+1), then

A( f (x)) = A
(

f1(x)X1 +π( f (x)
)

= f1(x)A(X1)+A
(

π( f (x))
)

.

But,

A
(

π( f (x))
)

= π( f (x)) and 〈A(X1),Y 〉= 〈A(X1),A(Y )〉= 〈X1,Y 〉= 0,

for all Y ∈R
n−q−1
s , because A fixes the points of R

n−q−1
s .

Thus A(X1) ∈ S(0,1) ⊂ R
q+1
n−s ⊥ R

n−q−1
s , since A(X1) ⊥ R

n−q−1
s and ‖A(X1)‖

2 = ‖X1‖
2 = 1.

Therefore A( f (x)) = f1(x)A(X1)+π( f (x)) ∈ { f1(x)ξ +π( f (x)) | x ∈ N and ξ ∈ S(0,1)}. X

Affirmation 2: M̄ ⊂ M.

Let x∈N and ξ ∈ S(0,1)⊂R
q+1
t−s ⊥R

n−q−1
s . Lets assume that

{

X1,X2, · · · ,Xq+1

}

and
{

ξ ,Y2, · · · ,Yq+1

}

are two orthonormal basis of R
q+1
t−s such that ‖Xi‖

2 = ‖Yi‖
2. If

{

Xq+2, · · · ,Xn

}

is an orthonormal

basis of R
n−q−1
s , then we can define A ∈ Ot(n) by

A(Xi) =















ξ , if i = 1;

Yi, if i = 2, · · · ,q+1;

Xi, if i = q+2, · · · ,n.

5
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It is clear that A ∈ O(q+1) and f1(x)ξ +π( f (x)) = f1(x)A(X1)+A(π( f (x))) = A( f (x)). X

Affirmation 3: g is an immersion.

In deed, calculating dg(x,ξ )(v1,v2) we get

dg(x,ξ )(v1,v2) = 〈d f (x)v1,X1〉ξ + 〈 f (x),X1〉v2 +π
(

d f (x)v1

)

.

If dg(x,ξ )(v1,v2) = 0, then 〈d f (x)v1,X1〉ξ = 0, 〈 f (x),X1〉v2 = 0 and π (d f (x)v1) = 0, since

v2 ⊥ ξ and ξ ,v2 ∈ R
q+1
t−s ⊥ R

n−q−1
s . Thus















〈d f (x)v1,X1〉= 0, cause ξ 6= 0;

v2 = 0, cause f (x) /∈ R
n−q−1
s , ie.,〈 f (x),X1〉 6= 0; and

π (d f (x)v1) = 0.

Thus

〈d f (x)v1,X1〉X1 +π (d f (x)v1) = d f (x)v1 = 0 ⇒ (v1,v2) = (0,0).

Therefore g is an immersion. X •

(I.2) : The proof is analogous to the proof of the previous case. •

(I.3) : Lets assume that Rn−q is lightlike (nondegenerate). Since R
n−q−1
s is a vector subspace of

R
n−q, there exists a lightlike vector X1 ∈ R

n−q ∩
(

R
n−q−1
s

)⊥
. Thus, f (x) = f1(x)X1 +π( f (x)).

Affirmation 1: M ⊂ M̄.

Analogous to the Affirmation 1 of the case (I.1). X

Affirmation 2: M̄ ⊂ M.

Let x∈N and ξ ∈L ∗⊂R
q+1
t−s =(Rn−q−1

s )⊥ and lets consider
{

X1,X2, · · · ,Xq+1

}

and
{

ξ ,Y2, · · · ,Yq+1

}

two basis of R
q+1
t−s such that

• X1, X2, ξ and Y2 are lightlike;

• 〈X1,X2〉= 1 = 〈ξ ,Y2〉;

• {X3, · · · ,Xq+1} and {Y3, · · · ,Yq+1} are orthonormal sets;

• {X1,X2} ⊥ {X3, · · · ,Xq+1} and {ξ ,Y2} ⊥ {Y3, · · · ,Yq+1}.

If
{

Xq+2, · · · ,Xn

}

is an orthonormal basis of R
n−q−1
s , then we can define A ∈ Ot(n) by

A(Xi) =















ξ , if i = 1;

Yi, if i ∈ {2, · · · ,q+1};

Xi, if i ∈ {q+2, · · · ,n}.

Thus, A ∈ O(q+1) and f1(x)ξ +π( f (x)) = f1(x)A(X1)+A(π( f (x))) = A( f (x)). X

Affirmation 3: If N is a riemannian manifold and f is an isometric immersion, then g is also an

immersion.

6
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In deed, calculating dg(x,ξ )(v1,v2) we get

dg(x,ξ )(v1,v2) = 〈d f (x)v1,X2〉ξ + 〈 f (x),X2〉v2 +π
(

d f (x)v1

)

,

where X2 ∈ R
q+1
t−s is a lightlike vector such that 〈X1,X2〉= 1.

If dg(x)(v1,v2) = 0, then 〈d f (x)v1,X2〉ξ +〈 f (x),X2〉v2 = 0 and π (d f (x)v1) = 0, since ξ ,v2 ∈

R
q+1
t−s ⊥R

n−q−1
s and π( f (x)) ∈ R

n−q−1
s .

Knowing that N is riemannian and f is an isometric immersion, we have that d f (x)v1 is null

or it is a spacelike vector. But d f (x)v1 = 〈d f (x)v1,X2〉X1 + π(d f (x)v1) = 〈d f (x)v1,X2〉X1, ie.,

d f (x)v1 is not spacelike. Therefore d f (x)v1 = 0 and v1 = 0.

Thus, dg(x,ξ )(v1,v2) = f1(x)v2 = 0 and g is an immersion, cause f (N)∩R
n−q−1
s = ∅ and

f1(x) 6= 0. X

Remark 4. In case (I.3), through the calculations of the differential dg(x,ξ ), it is easily proved

that g is an immersion if, and only if, f∗T N∩ span{X1}= {0}⇔R
n−q∩ (Rn−q)

⊥
∩ f∗(T N) = {0}.

Therefore, instead of supposing that N is riemannian and f is an isometric immersion, we could

suppose that f∗T N ∩ span{X1}= {0}, without changing the thesis.

We need more results in order to show case (II) of Proposition 2.

Let X1 and X2 be lightlike vectors of Rn
t such that 〈X1,X2〉= 1 and lets suppose that

R
n
t = span{X1,X2}kU kV,

where U and V are nondegenerate vector subspaces. Lets consider the lightlike vector subspace

W := span{X2}kU ⊂ R
n
t , O(V ) the group of linear isometries of V and O(V )⋉V the group of

isometries of V . We can define the applications I : V → span{X1,X2}kV and Φ : O(V )⋉V →

Ot(n) by

I (x) := X1 + x−
‖x‖2

2
X2 and (2.1)

Φ(B,x)(v+ v⊥) := v⊥−

(

〈Bv,x〉+

〈

X2,v
⊥
〉

2
‖x‖2

)

X2 +Bv+
〈

X2,v
⊥
〉

x, (2.2)

for all v+ v⊥ ∈V kV⊥ = R
n
t .

In [8], it is proved the following lemma:

Lemma 5. 1. I : V → I (V ) is an isometry.

2. Φ : O(V )⋉V → W is a group isomorphism, where W is the subgroup of Ot(n) which fixes

the points of W.

3. W is the isometries group of I (V ) =
{

X1 + x− ‖x‖2

2
X2

∣

∣

∣
x ∈V

}

.

Proof of the case (II) of Proposition 2.

Lets suppose that Rn−q−1 is lightlike and that there exist a nondegenerate vector subspace

U ⊂ R
n
t and a lightlike vector X2 ∈ R

n
t such that Rn−q−1 = span{X2}kU . In this case, there exist

a lightlike vector X1 ∈ R
n
t and a nondegenerate subspace V ⊂R

n
t such that

R
n
t = span{X1,X2}kU kV, 〈X1,X2〉= 1 and R

n−q = span{w,X2}⊕U,

7
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where w ∈V , or w = X1.

If A ∈ O(q+1) and x ∈ N, then

A
(

f (x)
)

= A
(

f1(x)w+π
(

f (x)
))

= f1(x)A(w)+π( f (x)).

By Lemma 5, there exist an isometry B of V and a vector v ∈V such that A = Φ(B,v).

(II.1) : Lets suppose that Rn−q =R
n−q
s = span{X1,X2}kU . In this case, f1(x) = 〈 f (x),X2〉 and we

can write f (x) = f1(x)X1 +π( f (x)). Thus,

A
(

f (x)
)

= f1(x)A(X1)+π( f (x)).

By the other side,

A(X1) = Φ(B,v)(X1)
(2.2)
= X1 −

‖v‖2

2
X2 + v ⇒ A

(

f (x)
)

= f1(x)

(

X1 −
‖v‖2

2
X2 + v

)

+π( f (x)).

Thus, M ⊂ M̄.

Let f1(x)
(

X1 −
‖v‖2

2
X2 + v

)

+π( f (x)) ∈ M̄. Given B ∈ O(V ), Φ(B,v) ∈ O(q+1), by Lemma

5. Furthermore, Φ(B,v)(X1) = X1 −
‖v‖2

2
X2 + v, thus

f1(x)

(

X1 −
‖v‖2

2
X2 + v

)

+π( f (x)) = f1(x)Φ(B,v)(X1)+π( f (x)) = Φ(B,v)( f (x)) ∈ M.

Therefore, M = M̄.

Calculating dg(x,v) we get

dg(x,v)(v1,v2) = 〈d f (x)v1,X2〉X1 −

(

〈d f (x)v1,X2〉
‖v‖2

2
+ f1(x)〈v,v2〉

)

X2 +π(d f (x)v1)+

+ 〈d f (x)v1,X2〉v+ f1(x)v2.

If dg(x,v)(v1 ,v2) = 0, then



















〈d f (x)v1,X2〉X1 = 0 ⇒ 〈d f (x)v1,X2〉= 0,

〈d f (x)v1,X2〉v+ f1(x)v2 = 0 ⇒ f1(x)v2 = 0 ⇒ v2 = 0,

−

(

f1(x)〈v,v2〉+ 〈d f (x)v1,X2〉
‖v‖2

2

)

X2 +π(d f (x)v1) = 0 ⇒ π(d f (x)v1) = 0,

since v,v2 ∈V ⊥ R
n−q, Rn−q = span{X1,X2}kU and π( f (x)) ∈ R

n−q−1 = span{X2}kU . There-

fore f is an immersion. •

(II.2) : Lets suppose that Rn−q = span{w} k R
n−q−1 = span{w,X2}k U , for some unit vector

w ∈V . In this case, f1 = ε 〈 f (x),w〉, where ε = ‖w‖2. Thus,

A
(

f (x)
)

= f1(x)Φ(B,v)(w)+π( f (x))
(2.2)
= f1(x)(−〈Bw,v〉X2 +Bw)+π( f (x)).

Calling λ :=−〈Bw,v〉, we have that M ⊂ M̄, since ‖Bw‖2 = ‖w‖2. Lets consider f1(x)(λX2 +

ξ )+π( f (x)) ∈ M̄, B ∈ O(V ) and v ∈V such that Bw = ξ and 〈ξ ,v〉=−λ , in this way

f1(x)(λX2 +ξ )+π( f (x)) = f1(x)(−〈Bw,v〉X2 +Bw)+π( f (x)) =

= f1(x)Φ(B,v)(w)+π( f (x)) = Φ(B,v)( f (x)).

8
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Therefore f1(x)(λX2 +ξ )+π( f (x)) ∈ M.

Calculating dg(x,ξ ,λ ) we get

dg(x,ξ ,λ )(v1,v2,r) = [ε 〈d f (x)v1,w〉ξ + f1(x)v2]+ [ε 〈d f (x)v1,w〉λ + f1(x)r]X2+

+π(d f (x)v1).

If dg(x,ξ ,λ )(v1,v2,r) = 0, then

{

ε 〈d f (x)v1,w〉ξ + f1(x)v2 = 0,

[ε 〈d f (x)v1,w〉λ + f1(x)r]X2 +π(d f (x)v1) = 0,

since ξ ,v2 ∈V and X2,π(d f (x)v1) ∈V⊥.

In this way, 〈d f (x)v1,w〉 = 0 and v2 = 0, since ξ ∈ S(0,ε), v2 ⊥ S(0,ε) and f (x) /∈ R
n−q−1,

thus f1(x)rX2 +π(d f (x)v1) = 0. If f is an isometric immersion and N is riemannian, then g is an

immersion. •

Remark 6. Using the calculations above for the case (II.2) of Proposition 2,

dg(x,ξ ,λ )(v1,v2,r) = 0 ⇔















〈d f (x)v1,w〉= 0,

v2 = 0,

f1(x)rX2 +π(d f (x)v1) = 0.

Therefore, g is an immersion if, and only if, f∗(T N)∩ span{X2} = {0} ⇔ R
n−q ∩ (Rn−q)

⊥
∩

f∗(T N) = {0}.

Definition 7. The immersion g given at Proposition 2 is called rotational immersion of the rota-

tional submanifold M.

Proof of Corollary 3. Let f : Nm−q →R
n−q ⊂ L

n be an immersion and M a rotational submanifold

on f with axis Rn−q−1 ⊂ R
n−q. The only possibilities we have for Rn−q−1 and R

n−q are:

1. R
n−q−1 and R

n−q are both spacelike or both timelike, ie., both have the same index (equals

to ±1);

2. R
n−q−1 is spacelike and R

n−q is timelike, ie., Rn−q−1 has index 0 and R
n−q has index 1;

3. R
n−q−1 is spacelike and R

n−q is lightlike;

4. R
n−q−1 is lightlike and R

n−q is timelike;

5. R
n−q−1 and R

n−q are both lightlike.

But all cases above were studied by Proposition 2.

Remarks 8. By observations 4 and 6, if M is a rotational submanifold in L
n on f : N → R

n−q and

R
n−q is lightlike, then g is an immersion if, and only if, Rn−q ∩ (Rn−q)

⊥
∩ϕ∗(T N) = {0}, ie., g is

an immersion if, and only if, N is a riemannian manifold with the metric induced by f .

9
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3. Proof of Theorem 1

In order to prove Theorem 1, we need some additional results. The euclidean versions of these

results can be found in [5].

Lemma 9. Let f : Mm → R
n
t be an isometric immersion and η a principal normal of f . Then, for

all X ∈ Eη(x) and all ξ ,ζ ∈ T⊥
x M such that ξ ⊥ η and 〈ζ ,η〉= 1, the following formulas are true:

AηX = ‖η‖2X , Aξ X = 0 e Aζ X = X . (3.1)

Let D be a distribution in M such that D(x) ⊂ Eη(x), for all x ∈ M.

1. If η is parallel in the normal connexion of f along D , then ∇‖η‖2 ∈ Γ
(

D⊥
)

, where ∇‖η‖2

is the gradient vector of ‖η‖2. Furthermore, the following formulas are true:

(

‖η‖2 Id−Aη

)

∇XY =
〈X ,Y 〉

2
∇‖η‖2, (3.2)

〈

Aξ ∇XY,Z
〉

= 〈X ,Y 〉
〈

∇⊥
Z ξ ,η

〉

, (3.3)

〈

(Id−Aζ )∇XY,Z
〉

=−〈X ,Y 〉
〈

∇⊥
Z ζ ,η

〉

, (3.4)

for all X ,Y ∈ Γ(D), all Z ∈ Γ
(

D⊥
)

an all ξ ,ζ ∈ Γ
(

T⊥M
)

such that ξ ⊥ η and 〈ζ ,η〉= 1.

2. If D is an umbilical distribution and ϕ is its mean curvature vector, then

∇̃X f∗Y = f∗∇v
XY + 〈X ,Y 〉σ , ∀X ,Y ∈ Γ(D), (3.5)

where σ := f∗ϕ +η and ∇v
XY is the orthogonal projection of ∇XY on D .

3. With the same hypothesis of (I) and (II),

(

‖η‖2 Id−Aη

)

ϕ =
1

2
∇
(

‖η‖2
)

, (3.6)

〈

Aξ ϕ ,Z
〉

=
〈

∇⊥
Z ξ ,η

〉

, (3.7)

〈

(Id−Aζ )ϕ ,Z
〉

=−
〈

∇⊥
Z ζ ,η

〉

, (3.8)

〈

∇Xϕ ,
(

‖η‖2 Id−Aη

)

Z
〉

= 0, (3.9)
〈

∇Xϕ ,Aξ Z
〉

= 0, (3.10)
〈

∇Xϕ ,(Id−Aζ )Z
〉

= 0, (3.11)

for all X ∈ Γ(D), all Z ∈ Γ
(

U ⊥
)

and all ξ ,ζ ∈ Γ
(

T⊥M
)

such that ξ ⊥ η e 〈ζ ,η〉= 1.

Proof. Let X ∈ Eη(x), Y ∈ TxM and ξ ,ζ ∈ T⊥
x M such that ξ ⊥ η and 〈ζ ,η〉= 1. Then

〈Aη X ,Y〉= 〈α (X ,Y ) ,η〉= 〈〈X ,Y 〉η ,η〉= ‖η‖2 〈X ,Y 〉 ,
〈

Aξ X ,Y
〉

= 〈α (X ,Y ) ,ξ 〉= 〈X ,Y〉 〈η ,ξ 〉= 0,
〈

Aζ X ,Y
〉

= 〈α (X ,Y ) ,ζ 〉= 〈X ,Y〉 〈η ,ζ 〉= 〈X ,Y 〉 .

Therefore AηX = ‖η‖2X , Aξ X = 0 e Aζ X = X . •

10
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Let X ,Y ∈ Γ(D), Z ∈ Γ
(

D⊥
)

and ξ ,ζ ∈ Γ
(

T⊥
f M

)

such that ξ ⊥ η e 〈ξ ,ζ 〉= 1.

(I) : Knowing that η is parallel in the normal connection of f along D , then

X
(

‖η‖2
)

= 0 ⇒
〈

X ,∇‖η‖2
〉

= 0.

Therefore ∇‖η‖2 ∈ Γ
(

D⊥
)

.

Using the Codazzi Equation and equation (3.1), and after some computations, we get that

∇X AηZ −Aη∇X Z = Z
(

‖η‖2
)

X +
(

‖η‖2 Id−Aη

)

∇ZX −A∇⊥
Z η X .

Taking the inner product of both sides of the above equality by Y , and after some computations, we

obtain
〈

Z,
(

‖η‖2 Id−Aη

)

∇XY
〉

=
〈X ,Y 〉

2

〈

∇‖η‖2,Z
〉

. (3.12)

We know that, if K ∈ D , then
〈(

‖η‖2 Id−Aη

)

∇XY,K
〉

=
〈

∇XY,
(

‖η‖2 Id−Aη

)

K
〉

= 0, that

is, the only component of
(

‖η‖2 Id−Aη

)

∇XY is in D⊥. Therefore, equation (3.2) follows from

equation (3.12).

We can derive Equation (3.3) making similar computations from Codazzi Equation for Aξ , X

and Z and taking the inner product with Y . Equation (3.4) is similar, but we must use X , Aζ and Z

at Codazzi Equation.

(II) : If D is an umbilical distribution and ϕ is its mean curvature vector, then

∇̃X f∗Y = f∗∇XY +α (X ,Y ) = f∗∇v
XY + f∗∇

h
XY + 〈X ,Y 〉η =

= f∗∇v
XY + 〈X ,Y 〉 f∗ϕ + 〈X ,Y 〉η = f∗∇v

XY + 〈X ,Y 〉σ .•

(III) : If D is an umbilical distribution and ϕ is its mean curvature vector, then ∇X X = ∇v
X X +

∇h
X X e ∇h

X X = ϕ , where ∇v
XX and ∇h

X X are the orthogonal projections of ∇X X on D and on D⊥,

respectively. Thus,

(

‖η‖2 Id−Aη

)

ϕ =
(

‖η‖2 Id−Aη

)

∇h
X X

(3.1)
=
(

‖η‖2 Id−Aη

)

(

∇v
X X +∇h

XX
)

=

=
(

‖η‖2 Id−Aη

)

∇X X
(3.2)
=

1

2
∇‖η‖2

Therefore equation (3.6) is true.

The equations (3.7) and (3.8) follow, respectively, from equations (3.3) and (3.4), using equa-

tion (3.1).

Using (3.6), we can compute that

〈

∇X ϕ ,
(

‖η‖2 Id−Aη

)

Z
〉

=
1

2
X
〈

∇‖η‖2,Z
〉

−
〈

ϕ ,∇X

(

‖η‖2 Id−Aη

)

Z
〉

. (3.13)

Using Codazzi Equation for Aη , X and Z, using equation (3.6), and after some computations,

we obtain
〈

∇X

(

‖η‖2 Id−Aη

)

Z,ϕ
〉

=
1

2
XZ
(

‖η‖2
)

=
1

2
X
〈

Z,∇‖η‖2
〉

.

Thus we get the equation (3.9) replacing the last equation in (3.13).

11
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We know that η is parallel in the normal connection of f along D and ξ ⊥ η , thus
〈

∇⊥
X ξ ,η

〉

=

−
〈

ξ ,∇⊥
X η
〉

= 0, that is, ∇⊥
X ξ ⊥ η . In this way, using the Codazzi Equation for Aξ , X and Z, using

equation (3.7), and after some computations, we obtain

〈

Aξ Z,∇Xϕ
〉

=
〈

R
⊥(X ,Z)ξ ,η

〉

.

By the other side, by Ricci Equation,

〈

R
⊥(X ,Z)ξ ,η

〉

=
〈

✘
✘
✘
✘
✘

R̃(X ,Z)ξ ,η
〉

−
〈

✘
✘
✘
✘
✘

[

Aξ ,Aη

]

X ,Z
〉

= 0.

Therefore, the equation (3.10) is true.

Similarly, equation (3.11) is obtained using the Codazzi equation for Aζ , X and Z, equations

(3.7) and (3.8) and the Ricci Equation for X , Z, ζ and η . •

Corollary 10. Let f : Mm → R
n
t be an isometric immersion. If η is a non null Dupin normal of f ,

Eη is an umbilical distribution and ϕ is the mean curvature vector of Eη , then Eη is a spherical

distribution and the equations of Lemma 9 are true.

Proof. Taking D := Eη , the formulas of Lemma 9 are true. To show that Eη is spherical, we will

show that ∇X ϕ(x) ∈ Eη(x), for all x ∈ M and all X ∈ Eη(x). But this is equivalent to show that

(

Aψ −〈ψ ,η〉 Id
)

∇X ϕ(x) = 0,

for all x ∈ M and all ψ ∈ T⊥
x M.

Let x ∈ M and ψ ∈ T⊥
x M.

If η(x) is timelike or spacelike.

In this case, ‖η(x)‖2 6= 0 and

Aψ −〈ψ ,η〉 Id = Aψ−〈ψ ,η〉 η

‖η‖2
+ 〈ψ ,η〉A η

‖η‖2
−〈ψ ,η〉 Id =

= Aψ−〈ψ ,η〉 η

‖η‖2
+ 〈ψ ,η〉

(

A η

‖η‖2
− Id

)

= Aξ + 〈ψ ,η〉

(

A η

‖η‖2
− Id

)

,

where ξ := ψ −〈ψ ,η〉 η
‖η‖2 ⊥ η . If Z ∈ E⊥

η (x), then

〈(

Aψ −〈ψ ,η〉 Id
)

∇Xϕ ,Z
〉

=
〈

Aξ ∇X ϕ ,Z
〉

+ 〈ψ ,η〉

〈(

A η

‖η‖2
− Id

)

∇X ϕ ,Z

〉

.

By equations (3.9) e (3.10),

〈

∇X ϕ ,Aξ Z
〉

= 0 =
〈

∇X ϕ ,
(

‖η‖2 Id−Aη

)

Z
〉

.

Therefore
〈(

Aψ −〈ψ ,η〉 Id
)

∇Xϕ ,Z
〉

= 0. It remains to prove that
〈(

Aψ −〈ψ ,η〉 Id
)

∇X ϕ(x),Y
〉

=

0, for all Y ∈ Eη(x). But

〈(

Aψ −〈ψ ,η〉 Id
)

∇X ϕ(x),Y
〉

=
〈

∇X ϕ ,AξY
〉

+ 〈ψ ,η〉

〈

∇X ϕ ,

(

A η

‖η‖2
− Id

)

Y

〉

(3.1)
= 0.

12
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If η(x) is non null and lightlike.

In this case, there exists a lightlike vector ζ ∈ T⊥
x M such that 〈η ,ζ 〉= 1. Thus,

Aψ −〈ψ ,η〉 Id = Aψ−〈ψ ,η〉ζ + 〈ψ ,η〉Aζ −〈ψ ,η〉 Id = Aξ + 〈ψ ,η〉(Aζ − Id),

where ξ := ψ −〈ψ ,η〉ζ ⊥ η .

If Z ∈ E⊥
η (x),

〈(

Aψ −〈ψ ,η〉 Id
)

∇X ϕ ,Z
〉

=
〈

Aξ ∇X ϕ ,Z
〉

+ 〈ψ ,η〉
〈

(Aζ − Id)∇X ϕ(x),Z
〉

.

By the equalities (3.10) e (3.11),

〈

∇X ϕ ,Aξ Z
〉

= 0 =
〈

∇X ϕ ,(Id−Aζ )Z
〉

.

Therefore
〈(

Aψ −〈ψ ,η〉 Id
)

∇Xϕ ,Z
〉

= 0.

By the other side, if Y ∈ Eη(x),

〈(

Aψ −〈ψ ,η〉 Id
)

∇X ϕ ,Y
〉

=
〈

∇X ϕ ,AξY
〉

+ 〈ψ ,η〉
〈

∇X ϕ ,(Aζ − Id)Y
〉 (3.1)

= 0.

Proposition 11. Let Mm be a riemannian manifold, f : Mm → R
n
t an isometric immersion and η

its non null principal normal.

1. If dimEη is constant and dimEη ≥ 2, then η is parallel in the normal connexion of f along

Eη , ie., η is a Dupin normal.

2. If D ⊂ Eη is a spherical distribution in M whose leafs are open subsets of

(a) q-dimensional ellipsoids given by the intersection S(c,r)∩ (c+L)⊂ R
n
t , where L is a

spacelike (q+1)-dimensional vector of Rn
t ;

(b) or q-dimensional hyperboloids given by the intersection S(c,−r)∩(c+L)⊂R
n
t , where

L is a timelike (q+1)-dimensional vector of Rn
t ;

(c) or q-dimensional paraboloids given by [L∗∩ (c+L)]+d ⊂R
n
t , where L = span{w}k

V is a lightlike (q+ 1)-dimensional vector of Rn
t (with V spacelike and w lightlike),

c ⊥V is lightlike and 〈c,w〉 6= 0;

then η is parallel in the normal connexion of f along D .

3. If η Dupin normal with multiplicity q, then Eη is an spherical distribution in Mm.

In this case, let x ∈ M, N be a leaf of Eη with x ∈ N and σ := f∗ϕ +η , where ϕ is the mean

curvature vector of Eη .

(a) If σ(x) is spacelike, then f (N) is an open subset of a q-dimensional ellipsoid in R
n
t

given by the intersection S(c,r)∩ (c+L), where L is a spacelike (q+ 1)-dimensional

subspace of Rn
t .

(b) If σ(x) is timelike, then f (N) is an open subset of a q-dimensional hyperboloid in R
n
t

given by the intersection S(c,−r)∩ (c+L), where L is a timelike (q+ 1)-dimensional

subspace of Rn
t .

13
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(c) If σ(x) is lightlike and non null, then f (N) is an open subset of a q-dimensional

paraboloid in R
n
t given by c+

{

v+ ‖v‖2

2
w

∣

∣

∣
v ∈V (x)

}

, where V ⊂ R
n
t is a spacelike

q-dimensional vector subspace and w ⊥V is lightlike.

Remarks 12. Through the proof made ahead, at the items (III.1) and (III.2) of Proposition 11,

c = f (x)+
σ(x)

‖σ(x)‖2
, r =

1
√

|‖σ(x)‖2|
and L(x) = f∗Eη(x)k span{σ(x)}

are constant in each leaf of Eη .

At the item (III.3), the paraboloids containing the leafs of Eη are given by

p(x)+ (−σ̃(x)+L)∩L = p(x)− σ̃(x)+

{

v+
‖v‖2

2
σ(x)

∣

∣

∣

∣

v ∈V (x)

}

,

ξ (x) :=−
q

∑
i=1

〈d f (x)ei, σ̃(x)〉d f (x)ei +
1

2

q

∑
i=1

〈d f (x)ei, σ̃(x)〉2 σ(x)+ σ̃(x).

Proof of Proposition 11.

Let X v and Xh be the orthogonal projections of X ∈ Γ(T M) on D and D⊥, respectively. Like-

wise, let ∇v
XY and ∇h

XY be the orthogonal projections of ∇XY on D and D⊥, respectively.

(I) : Let D := Eη , X ,Y ∈ Γ(Eη) and ξ ,ζ ∈ Γ
(

T⊥M
)

such that ξ ⊥ η e 〈ζ ,η〉 = 1. By Codazzi

Equation for Aξ , X and Y and using (3.1), we get

Aξ ∇XY +A∇⊥
X ξY = Aξ ∇Y X +A∇⊥

Y ξ X .

We suppose that X ⊥ Y and that ‖Y‖2 = 1, since dimEη ≥ 2. Thus, taking the inner product with

Y of both sides of the above equation, using (3.1) and after some calculations, we can get that
〈

∇⊥
X η ,ξ

〉

= 0.

Similarly, by Codazzi Equation for Aζ , X and Y , and taking the inner product with Y , we can

compute that
〈

∇⊥
X η ,ζ

〉

= 0.

We conclude that ∇⊥
X η = 0, cause

〈

∇⊥
X η ,ξ

〉

= 0 and
〈

∇⊥
X η ,ζ

〉

= 0, for all ξ ,ζ ∈ Γ
(

T⊥M
)

such that ξ ⊥ η and 〈ζ ,η〉= 1. •

(II.1) and (II.2) : Lets suppose that the leafs of D are open subsets of q-dimensional ellipsoids or

hyperboloids given by S(c,εr)∩ (c+L)⊂ R
n
t , where

a) or ε = 1 and L is an (q+1)-dimensional spacelike subspace of Rn
t , if L is spacelike;

b) or ε =−1 and L is and (q+1)-dimensional timelike subspace of Rn
t , if L is timelike.

Let N ⊂ M be a leaf (integral submanifold) of D . Thus, f (N) ⊂ S(c,εr)∩ (c+L) ⊂ R
n
t , for

some c∈R
n
t , r > 0 and some (q+1)-dimensional spacelike or timelike vector subspace Lq+1 ⊂R

n
t .

Lets define the field σ : N → R
n
t by σ(x) :=−ε f (x)−c

r2 and let X ∈ Γ(D), in this way

‖σ‖2 =
ε2

r4
‖ f (x)− c‖2 =

ε3r2

r4
=

ε

r2
and

〈σ , f∗X〉=−ε

〈

f (x)− c

r2
, f∗X

〉

=−εr2

〈

−ε
f (x)− c

r2
,−ε

f∗X

r2

〉

=−r2ε 〈σ ,σ∗X〉= 0,

14
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that is, σ is normal to N and ‖σ‖2 = ε
r2 is constant in N.

Knowing that D ⊂ Eη and that D is a spherical distribution, we can get that

∇̃X f∗Y = f∗∇v
XY + 〈X ,Y〉 ( f∗ϕ +η) .

By the other side, c+L is totally geodesic if Rn
t , f (N)⊂ S(c,εr)∩ (c+L) ⊂R

n
t and ∇v is the

Levi-Civita connection of N, then

∇̃X f∗Y = f∗∇v
XY −〈X ,Y 〉ε

f − c

r2
= f∗∇v

XY + 〈X ,Y 〉σ

Comparing the last two equations, we get that σ = f∗ϕ +η and η = σ − f∗ϕ . Thus,

∇̃X η = ∇̃Xσ − ∇̃X f∗ϕ =−∇̃Xε
f − c

r2
− f∗∇X ϕ −

✘
✘
✘
✘α (X ,ϕ) =

=−
ε

r2
f∗X − f∗∇Xϕ , cause X ∈ D ⊂ Eη .

Therefore ∇⊥
X η = 0. •

(II.3) : Lets suppose that the leafs of D are open subsets of q-dimensional paraboloids given by

[L ∩ (L+ c)]+d ⊂R
n
t , where L = span{w}kV is a (q+1)-dimensional lightlike vector subspace

of Rn
t (with V spacelike and w lightlike), c ⊥V is lightlike and 〈c,w〉 6= 0.

Let N be a leaf of D . But [L ∩ (L+ c)]+d ⊂ span{c,w}kV +d ⊂R
n
t and span{c,w}kV +d

is totally geodesic in R
n
t , thus we can consider f |N : N → span{c,w}kV +d.

But f − d ∈ L , thus f − d is field normal to N. Let
{

w,X1, · · · ,Xq

}

be a basis of L such

that
{

X1, · · · ,Xq

}

is a orthonormal basis of V . In this way, span{c,w} k V = L + span{c} =

span
{

w, w̃,X1, · · · ,Xq

}

, where {w, w̃} is a pseudo-orthonormal basis of span{w,c}. We can suppose

that c = bw̃.

We will show that
〈

f −d, w
b

〉

= 1. Indeed, f (x)−d ∈ L+ c, thus

f (x)−d = a(x)w+bw̃+
q

∑
i=1

xi(x)Xi ⇒
〈

f −d,
w

b

〉

= 1,

and thus w ⊥ N.

But f −d and w
b

are orthogonal to N and f (N)⊂ span{c,w}kV +d, then

α f |N (X ,Y ) =
〈

α f |N (X ,Y ), f −d
〉 w

b
+
〈

α f |N (X ,Y ),
w

b

〉

( f −d) =

=
〈

A f−dX ,Y
〉 w

b
+
〈

A w
b
X ,Y

〉

( f −d).

By the other side, ∇̃X
w
b
= 0 and ∇̃X( f −d) = f∗X . Therefore α f |N (X ,Y ) =−〈X ,Y 〉 w

b
.

By the same calculations made at the cases (II.1) and (II.2), we get that ∇̃X f∗Y = f∗∇v
XY +

〈X ,Y 〉( f∗ϕ +η). Thus

−
w

b
= f∗ϕ +η ⇒ η =−

w

b
− f∗ϕ ⇒

⇒ ∇̃X η =−∇̃X( f∗ϕ) =− f∗∇X ϕ −✘
✘
✘〈X ,ϕ〉η =− f∗∇X ϕ .

Therefore ∇⊥
X η = 0, for all X ∈ D . •

15
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(III) : If D := Eη , then, by Lemma 9, the equations (3.1) to (3.4) hold.

Affirmation 1: If X ,Y ∈ Γ(Eη) and X ⊥ Y , then ∇XY ∈ Γ(Eη).

If Z ∈ Γ
(

E⊥
η

)

, ξ ,ζ ∈ Γ
(

T⊥M
)

, ξ ⊥ η and 〈ζ ,η〉= 1, then

(

‖η‖2 Id−Aη

)

∇XY
(3.2)
=

✘
✘
✘〈X ,Y 〉

2
∇‖η‖2 = 0 ⇒ ‖η‖2∇XY = Aη ∇XY ; (3.14)

〈

Aξ ∇XY,Z
〉 (3.3)

= ✘
✘
✘〈X ,Y 〉〈∇Zξ ,η〉= 0 ⇒ Aξ ∇XY ∈ Γ(Eη) ;

〈(

Id−Aζ

)

∇XY,Z
〉 (3.4)

= −✘✘
✘〈X ,Y 〉
〈

∇⊥
Z ζ ,η

〉

= 0 ⇒ (Id−Aζ )∇XY ∈ Γ(Eη) .

By the other side, if W ∈ Eη , then







〈

Aξ ∇XY,W
〉

=
〈

∇XY,AξW
〉 (3.1)

= 0;
〈

(Id−Aζ )∇XY,W
〉

=
〈

∇XY,(Id−Aζ )W
〉 (3.1)

= 0.

Therefore

Aξ ∇XY = 0 e (Id−Aζ )∇XY = 0, (3.15)

for all ξ ,ζ ∈ Γ
(

T⊥M
)

such that ξ ⊥ η and 〈ζ ,η〉= 1.

Let x ∈ M be a point and ψ ∈ T⊥
x M be a normal vector. If η(x) is timelike or spacelike, then

‖η(x)‖2 6= 0, thus

(

Aψ −〈ψ ,η〉 Id
)

∇XY = Aψ−〈ψ ,η〉 η

‖η‖2
∇XY −〈ψ ,η〉

(

Id−A η

‖η‖2

)

∇XY
(3.14),(3.15)

= 0.

If η(x) is lightlike, then there exists a lightlike vector ζ ∈ T⊥
x M such that 〈η(x),ζ 〉 = 1. In this

case,
(

Aψ −〈ψ ,η〉 Id
)

∇XY = Aψ−〈ψ ,η〉ζ ∇XY −〈ψ ,η〉
(

Id−Aζ

)

∇XY
(3.14),(3.15)

= 0.

But
(

Aψ −〈ψ ,η〉 Id
)

∇XY = 0, for all ψ , is equivalent to ∇XY ∈ Eη . X

Affirmation 2: Eη is umbilical.

We have to show that there exists ϕ ∈ Γ
(

E⊥
η

)

such that ∇h
XY = 〈X ,Y 〉ϕ , for any pair of

vector fields X ,Y ∈ γ (Eη). But the application (X ,Y ) 7→ ∇h
XY is bilinear in Eη because, for any

Z ∈ Γ
(

E⊥
η

)

,
〈

∇h
XY,Z

〉

= −〈Y,∇X Z〉. Besides that, Affirmation 1 stands that X ⊥ Y ⇒ ∇h
XY = 0.

Then, a known Lemma stands that there exists ϕ such that ∇h
XY = 〈X ,Y 〉ϕ (see, for example,

Lemma A.9 in [9]).

If we take a unit differentiable vector field X ∈ Eη , then ϕ = ∇h
X X . Therefore ϕ is differen-

tiable. X

Affirmation 3: Eη is spherical and the equations from Lemma 9 hold.

Just see Corollary 10. X

Let N ⊂ M be a leaf of Eη passing through x. Equation (3.5) stands that f |N : N → R
n
t is an

umbilical isometric immersion and that σ is its mean curvature vector. Therefore, knowing the

classifications of umbilical immersions in R
n
t , we have that Remarks 12 hold and that

• or f (N)⊂ S

(

c(x); 1
‖σ(x)‖

)

∩ (c(x)+L(x)), if σ(x) is spacelike;

16
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• or f (N)⊂ S

(

c(x);− 1
‖σ(x)‖

)

∩ (c(x)+L(x)), if σ(x) is timelike;

• or f (N) ⊂ p(x)+ (−σ̃(x)+L(x))∩L = p(x)− σ̃ (x)+
{

v+ ‖v‖2

2
σ(x) : v ∈V (x)

}

, if σ(x)

is lightlike.

For more details about umbilical immersions of a riemannian manifold in R
n
t , see Chapter 1 of

[9].

The following definition was given at [5]

Definition 13. Let D be an umbilical distribution in an riemannian manifold M. The splitting

tensor C of D is given by CX Z :=−∇h
ZX, for all X ∈ Γ(D) and all Z ∈ Γ

(

D⊥
)

.

Remarks 14. Given an orthonormal frame {w1, · · · ,wk} of D⊥, it follows that

CXZ =−∇h
ZX =−

k

∑
i=1

〈

∇h
ZX ,wi

〉

wi =
k

∑
i=1

〈X ,∇Zwi〉wi.

Therefore C f ·X g · Z = f · g ·CXZ, for any pair of differentiable applications f ,g : M → R, every

X ∈ Γ(D) and every Z ∈ Γ
(

D⊥
)

. Therefore C is a tensor.

Lemma 15. Let D be an umbilical distribution in M and ϕ its mean curvature vector. If X ,Y ∈ D

and W,Z ∈ D⊥, then:

(

∇h
XCY

)

W =CYCXW +C∇v
XYW −R

h(X ,W )Y + 〈X ,Y 〉
(

〈W,ϕ〉−∇h
W ϕ
)

, (3.16)
(

∇h
WCX

)

Z −
(

∇h
ZCX

)

W =C∇v
W XZ −C∇v

ZXW −R
h(W,Z)X −〈[W,Z],X〉ϕ , (3.17)

where Rh(X ,W )Y is the orthogonal projection of R(X ,W )Y on D⊥.

Se D ⊂ Eη , then

(

∇h
XCY

)

W =CYCXW +C∇v
XYW + 〈X ,Y 〉

(

AηW + 〈W,ϕ〉ϕ −∇h
W ϕ
)

, (3.18)
(

∇h
WCX

)

Z−
(

∇h
ZCX

)

W =C∇v
W X Z −C∇v

ZXW −〈[W,Z],X〉ϕ . (3.19)

If η is a principal normal of f : M → RN, D ⊂ Eη and D⊥ is a totally geodesic distribution,

then

∇h
W ϕ = AηW + 〈W,ϕ〉ϕ . (3.20)

Proof. See Lemma 9 of [5], where it was first proved, or Lemma 2.15 of [9].

Now we can prove Theorem 1.

Poof of Theorem 1.

Taking D(x) = Eη(x), the items (I) of Lemma 9 and (III) of Proposition 11 stands that

∇
(

‖η‖2
)

∈ E⊥
η and that Eη is an spherical distribution. Let ϕ be the mean curvature vector of

Eη and σ := f∗ϕ +η .

We will prove the following equation:

∇̃Zσ = 〈Z,ϕ〉σ , ∀Z ∈ E⊥
η . (3.21)

17
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By Lemmas 9 and 15, we have that

〈

∇⊥
Z η ,ξ

〉

=−〈α (Z,ϕ) ,ξ 〉 and ∇h
Zϕ = AηZ + 〈Z,ϕ〉ϕ ,

for all Z ∈ E⊥
η and all ξ ⊥ η .

By (3.6),
(

‖η‖2 Id−Aη

)

ϕ = 1
2
∇‖η‖2, thus

‖η‖2 〈ϕ ,Z〉− 〈AηZ,ϕ〉=
1

2
Z
(

‖η‖2
)

, ∀Z ∈ E⊥
η . (3.22)

In this way, using that E⊥
η is totally geodesic, we can compute

∇̃Zσ = 〈Z,ϕ〉 f∗ϕ +α (ϕ ,Z)+∇⊥
Z η .

Thus,
〈

∇̃Zσ ,ξ
〉

= 〈α (ϕ ,Z) ,ξ 〉+
〈

∇⊥
Z η ,ξ

〉

= 0, ∀ξ ⊥ η in T⊥
f M.

If η is spacelike or timelike (at some point), then

∇̃Zσ = 〈Z,ϕ〉 f∗ϕ +
〈

α (Z,ϕ)+∇⊥
Z η ,η

〉 η

‖η‖2
=

= 〈Z,ϕ〉 f∗ϕ +

[

〈Aη Z,ϕ〉+
1

2
Z
(

‖η‖2
)

]

η

‖η‖2
=

(3.22)
= 〈Z,ϕ〉 f∗ϕ +‖η‖2 〈ϕ ,Z〉

η

‖η‖2
= 〈Z,ϕ〉( f∗ϕ +η) = 〈Z,ϕ〉σ .

Lets suppose that η is lightlike at x ∈ M. In this case, there exists a lightlike vector ζ ∈ T⊥
x M

such that 〈η(x),ζ 〉 = 1. Thus, at x, the following equations hold:

∇̃Zσ = 〈Z,ϕ〉 f∗ϕ +
〈

α (ϕ ,Z)+∇⊥
Z η ,ζ

〉

η =

= 〈Z,ϕ〉 f∗ϕ +
[

〈

Aζ ϕ ,Z
〉

−
〈

η ,∇⊥
Z ζ
〉]

η =

(3.8)
= 〈Z,ϕ〉 [ f∗ϕ +η ] = 〈ϕ ,Z〉σ .

Therefore equation (3.21) holds.

Affirmation 1: ∇̃Z f∗X = f∗∇v
ZX , for all X ∈ Eη and all Z ∈ E⊥

η .

If X ∈ Γ(Eη) and Z,W ∈ Γ
(

E⊥
η

)

, then 〈∇ZX ,W 〉=−〈X ,∇ZW 〉=−〈X ,∇v
ZW 〉= 0, since E⊥

η

is totally geodesic. Thus, ∇̃Z f∗X = f∗∇ZX +
✘
✘
✘
✘α (Z,X) = f∗∇v

ZX . X

Affirmation 2: The distribution L := f∗Eη k [σ ] is parallel in R
n
t along M, that is, L = f∗Eη k [σ ]

is a constant vector subspace of Rn
t .

Indeed, if X ∈ Eη and f∗Y +βσ ∈ f∗Eη k [σ ], then, using that Eη is spherical and after some

computations, we obtain

∇̃X ( f∗Y +βσ) = f∗
[

∇v
XY −β

(

‖ϕ‖2 +‖η‖2
)

X
]

+[〈X ,Y 〉+X(β )]σ

By the other side, using (3.21) and Affirmation 1, we get that

∇̃Z ( f∗Y +βσ) = f∗∇v
ZY +[Z(β )+β 〈Z,ϕ〉]σ .

18
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Therefore L is parallel in R
n
t along M. X

We know that L is constant and f∗Eη is spacelike, thus L and σ are spacelike at all points of

M, or L and σ are timelike at all points of M, or L and σ are lightlike at all points of M.

Case 1: Lets suppose that σ is spacelike.

In this case, using item (III.1) of Proposition 11 and Remarks 12, it follows that the leafs of

Eη are q-dimensional ellipsoids in R
n
t given by the intersection S

(

c(x); 1
‖σ(x)‖

)

∩ (c(x)+L), where

‖σ(x)‖2 e c(x) = f (x)+ σ(x)
‖σ(x)‖2 are constant in each leaf of Eη .

We stand that c∗T M ⊥ L. Indeed, c is constant in the leafs of Eη , thus c∗X = 0, for all X ∈ Eη .

If Z ∈ E⊥
η , then, using (3.21), we get that

c∗Z = f∗Z−
〈Z,ϕ〉

‖σ‖2
σ .

Thus, 〈c∗Z, f∗X〉= 0 and 〈c∗Z,σ〉= 〈 f∗Z,σ〉−〈Z,ϕ〉= 〈Z,ϕ〉−〈Z,ϕ〉= 0. Therefore c∗T M ⊥ L.

Lets consider the manifold Nm−q := M/∼, where ∼ is the equivalence relation given by

x ∼ y ≡ x and y are at the same leaf of distribution Eη .

We know that c(x) = f (x)+ σ(x)
‖σ‖2 and ‖σ(x)‖2 are constant in each leaf of Eη , thus we can

define the applications c̄ : N → R
n
t and r : N → R by c̄(x̄) := c(x) e r(x̄) := 1

‖σ(x)‖ , where x̄ is the

equivalence class of x.

Let Π : Rn
t → L be the orthogonal projection. Thus, Π ◦ c and Π ◦ c̄ are constant in M and N

respectively, cause c∗T M ⊥ L. In this way,

f (x) = c(x)−
σ(x)

‖σ‖2
= p+h(x̄)− r(x̄)

σ(x)

‖σ(x)‖
,

where p := Π(c(x)) and h(x̄) is the orthogonal projection of c̄(x̄) on L⊥.

Therefore f (M) is an open subset of the rotational submanifold with axis L⊥ on the immersion

f̄ : N → L⊥ k span{ξ}, where f̄ (x̄) := h̄(x̄)+ r̄(x̄)ξ and ξ ∈ S(0,1) ⊂ L is a fixed vector. It’s

rotational parametrization g : N ×S(0,1)→ R
n
t is given by g(x̄,y) := p+h(x̄)+ r(x̄)y. •

Case 2: Lets suppose that σ is timelike.

This case is analogous to the first case. We can prove that f (M) is an open subset of the

rotational submanifold with axis L⊥ on the immersion f̄ : N → L⊥kspan{ξ}, where f̄ (x̄) := h̄(x̄)+

r̄(x̄)ξ , ξ ∈ S(0,−1)⊂ L is a fixed vector, N := M/∼ and ∼ is the equivalence relation given at Case

1. The rotational parametrization is g : N × S(0,−1) → R
n
t , given by g(x̄,y) := p+ h(x̄)+ r(x̄)y,

S(0,−1) ⊂ L. •

Case 3: Lets suppose that σ is lightlike.

In this case, L = Eη k span{σ} is a lightlike subspace subspace of Rn
t .

Affirmation 4: If x0 ∈ M and σ0 = σ(x0), then σ(x) = 1
r(x)σ0, for some differentiable function

r : M → R.

If x0 ∈M and {X1, · · · ,Xq} is an orthonormal basis of Eη(x0), then L= span{X1, · · · ,Xq,σ(x0)},

cause L is constant. Thus, σ(x) = a1(x)X1 + · · ·+am(x)Xm + 1
r(x)σ0 and 0 = ‖σ(x)‖2 = ∑m

i=1 a2
i (x).

It follows that a1(x) = · · ·= am(x) = 0 and σ(x) = 1
r(x)σ0.
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Let V ⊂ L be a spacelike vector subspace and σ̃0 be a lightlike vector such that σ̃0 ⊥ V and

〈σ0, σ̃0〉= 1. Thus, 1
r(x) = 〈σ(x), σ̃0〉 is differentiable. X

Lets define σ̃(x) := r(x)σ̃0. Thus, σ̃ is a lightlike differentiable field such that σ̃ ⊥ V and

〈σ , σ̃〉= 1. Besides that, Rn
t = span{σ , σ̃}kU kV = span{σ0, σ̃0}kU kV , where U =(span{σ , σ̃}kV)⊥

is a nondegenerated vector subspace of L⊥ ⊂R
n
t .

Lets consider

ξ (x) :=−
q

∑
i=1

〈vi(x), σ̃ (x)〉vi(x)+
1

2

q

∑
i=1

〈vi(x), σ̃ (x)〉2 σ(x)+ σ̃(x),

where vi(x) = f∗ei(x) e {e1(x), · · · ,eq(x)} is an orthonormal basis of Eη(x). It can be shown that ξ

is a lightlike differentiable field such that, ξ ⊥Eη , ξ ∈ Lkspan{σ̃}= Lkspan{σ̃0} and 〈ξ ,σ〉= 1

(see the arguments at Lemma 1.2 of [9]).

By item (III.3) of Proposition 11 and by Remarks 12,

f (x) ∈ p(x)+ (−σ̃(x)+L)∩L = p(x)− σ̃(x)+

{

v+
‖v‖2

2
σ(x)

∣

∣

∣

∣

v ∈V

}

,

where p(x) = f (x)+ξ (x) is constant in each leaf of Eη .

Let P : Rn
t →V be the orthogonal projection and v(x) = P( f (x)− p(x)). Thus, f (x)− p(x) ∈

span{σ̃ ,σ}kV and

f (x) = p(x)− σ̃(x)+ v(x)+
‖v(x)‖2

2
σ(x) = p(x)+ r(x)

(

−σ̃0 +w(x)+
‖w(x)‖2

2
σ0

)

,

where w(x) := v(x)
r(x) .

Affirmation 5: {v∗e1, · · · ,v∗eq} is an orthonormal basis of V .

If X ∈ Γ(Eη), then, using that Eη is spherical and η is a Dupin normal, we can get that

∇̃Xσ =−‖σ‖2 f∗X = 0.

Thus, σ , σ̃ and r are constant in the leafs of Eη . But p is also constant in the leafs of Eη , therefore

f∗ei = v∗ei + 〈v,v∗ei〉σ
〈

v∗ei,v∗e j

〉

=
〈

f∗ei, f∗e j

〉

and {v∗e1, · · · ,v∗eq} is an orthonormal basis of

V . X

Affirmation 6: ∇̃Zσ̃ =−〈Z,ϕ〉 σ̃ , for all Z ∈ E⊥
η .

By (3.21), 〈Z,ϕ〉σ = ∇̃Zσ = ∇̃Z
σ0

r
=−Z(r)

r2 σ0 =−Z(r)
r

σ . Thus, ϕ =−∇r
r

and ∇r =−rϕ .

Therefore, ∇̃Zσ̃ = ∇̃Zrσ̃0 = Z(r)σ̃0 = 〈Z,∇r〉 σ̃0 = 〈Z,−rϕ〉 σ̃0 =−〈Z,ϕ〉 σ̃ . X

We know that V ⊂ L is a fixed subspace, thus V k span{σ̃0}=V k span{σ̃} is also a constant

subspace. If Π : (span{σ̃}kV )⊕ (span{σ}kU) → span{σ̃}kV is the projection, then d(Π ◦

p)(x)X = 0, for any X ∈ Eη , because p is constant in the leafs of Eη .

If Z ∈ E⊥
η , then

d(Π◦ p)(x)Z = Π
(

∇̃Z p(x)
)

= Π
[

∇̃Z( f +ξ )(x)
]

.
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But, using Affirmation 2 and after some computations, we get that

∇̃Z( f +ξ ) = f∗Z −
q

∑
i=1

[(〈 f∗∇v
Zei, σ̃〉− 〈Z,ϕ〉〈 f∗ei, σ̃〉) f∗ei + 〈 f∗ei, σ̃〉 f∗∇v

Zei]+

+
q

∑
i=1

〈 f∗ei, σ̃〉〈 f∗∇v
Zei, σ̃〉σ −〈Z,ϕ〉 σ̃

By the other side, if X ∈ Γ(Eη), then f∗X = v∗X + 〈v,v∗X〉σ e 〈 f∗X , σ̃〉= 〈v,v∗X〉. Thus

∇̃Z( f +ξ ) = f∗Z −
q

∑
i=1

[(〈v,v∗∇v
Zei〉− 〈Z,ϕ〉〈v,v∗ei〉) f∗ei + 〈v,v∗ei〉 f∗∇v

Zei]+

+
q

∑
i=1

〈v,v∗ei〉〈v,v∗∇v
Zei〉σ −〈Z,ϕ〉 σ̃ . (3.23)

Besides that, we can easily compute that

Π(σ̃) = σ̃ ; Π(σ) = 0; Π( f∗X) = v∗X ; Π( f∗Z) =−〈Z,ϕ〉v+ 〈Z,ϕ〉 σ̃ ;

Therefore, after some calculations, we conclude that Π
[

∇̃Z( f +ξ )(x)
]

= 0, that is, q=Π(p(x))

is constant.

Let N := M/∼, where ∼ is the equivalence relation of Case 1, and π : Rn
t → span{σ}kU is

given by π := Id−Π. Thus,

f (x) = q+π(p(x))− σ̃(x)+ v(x)+
‖v(x)‖2

2
σ(x) = q+h(x̄)+ r̄(x̄)

(

−σ̃0 +w(x)+
‖w(x)‖2

2
σ0

)

,

where h : N → span{σ̃0}kU and r : N → R are given by h(x̄) = π(q(x)) and r̄(x̄) = r(x).

Therefore, f (M) is an open subset of the rotational submanifold with axis span{σ0}kU on

f̄ : N → span{σ̃0,σ0}kU , where f̄ (x̄) := h(x̄)− r̄(x̄)σ̃0. The rotational parametrization g : N ×

V → R
n
t is given by

g(x̄,w) := q+h(x̄)+ r̄(x̄)

(

−σ̃0 +w+
‖w‖2

2
σ0

)

. •
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