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In this work, we study a U(1)×U(1)′− model that results from a dimensional reduction of the
N = 1−D = 4 supersymmetric version of the Cremer-Scherk-Kalb-Ramond model with non-
minimal coupling to matter. Field truncations are not carried out, two Abelian symmetries coexist
and three vector fields are present; two of them are gauge bosons. Then, by considering the full
N = 2−D = 3 supersymmetric model, we study the mechanism for magnetic vortex formation
by means of the Bogomol’nyi relations, the magnetic flux and the topological charge in the pres-
ence of the two gauge potentials. A short discussion on the applications of our supersymmetric
model and vortices are also presented .
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1. Introduction

The study of symmetries in Physics is of crucial importance as a tool for the understanding
and the description of the Elementary Particles and their processes. The wide symmetry behind a
Grand-Unified Theory (GUT) accomodates a large variety of phenomena in a single model. For
instance, we have the Standard Model of the Elementary Particles (SM), where SU(3)⊗SU(2)⊗
U(1) describes three types of interactions. The existence of vortices is among the most interest-
ing and important consequences of the property of superfluidity. In the Bose-Einstein Condensate
(BEC), these vortices have been realized experimentally [1, 2, 3] and can be formed by domain-
wall annihilation BEC [4]. On the other hand, (2+1) dimensions have been of strong theoretical
and experimental interest for the experimental realization of monolayer graphene in 2004 [5, 6, 7],
where it was observed that the to low-energy excitations behave like negatively-charged fermions
satisfying a Dirac equation. These new possibilities open up a new interest on topological de-
fects in lower-dimensional fermionic systems. The Dirac-type excitations in pure graphene are
gapless; there appear specific impurities that affect the short-distance electron-electron interac-
tions [8, 9, 10, 11]. This environment provides special nonperturbative quantum features. It is
also possible to consider topological defects as a mechanism to introduce massive Dirac fermions
[12] The study of vortex configurations in a supersymmetric context is an issue of interest due to
the fact that supersymmetry (SUSY) is considered a fundamental symmetry and fermionic exci-
tations are naturally coupled and taken into account in a supersymmetric scenario. In the context
of the U(N)⊗U(N) gauge symmetry, it is important to highlight the construction of the Aharony-
Bergman-Jafferis-Maldacena (ABJM) model [13] that includes a large class of Superconformal
Chern-Simons (SCS) theories depending on the rank of the gauge group N and the Chern-Simons
level k. In the ABJM theory, composite of M-branes and domain wall solutions, vortex-type so-
lutions [14, 15, 16, 17, 18], and the classification of BPS conditions of intersecting M-branes [19]
have been carefully studied. For the vortex-type solutions in the ABJM theory, N = 1 Chern-
Simons vortex-type-regime have been obtained [17, 18] and the existence of the corresponding
vortices with N = 3 supersymmetry has been discussed [20]. Vortex solutions in the non rela-
tivistic limit of the ABJM theory have been studied in Ref. [21]. The vortex also can appear in
eleven dimensional supergravity scenarium [22] in most general form for AdS4 configuration[23].
On the other hand, p-form potentials appear in many supersymmetric models. A 2-form field is re-
ferred to as the Kalb-Ramond field (KR) [24, 25]. This field appear in ten dimensions linked with
the superstring theory[26]. Also, KR fields have already been studied in the physics of the topo-
logical insulators [27]. In this work, we wish to investigate the complete N = 2−D = 3 gauge
model with a U (1)×U (1)′ symmetry. In a previous work [30], the truncated N = 2−D = 3
model including the KR field has been considered and the vortex configurations have been worked
out. The truncation consisted in identifying fields that appear from the dimensional reduction of
an N = 1−D = 4 model, as studied in [29, 28]. Here, we reconsider this model and discuss the
full reduced model with two families of gauge potentials with a mixed Chern-Simons term and we
focus on the analysis of vortex-type solutions in the presence of the second family of gauge fields.
We could motivate the simultaneous presence of the two families of gauge potentials if we think
to consider special situations where charged matter in interaction with an electromagnetic field is
placed in a macroscopic external electric or magnetic field. In this situation, two electromagnetic
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fields are actually necessary. One of them is generated by the charged matter of the system under
consideration; the other one, is a strong field that is not affected by the matter and it is imposed
as an external condition; it is a sort of background field to which our system is subject. So, the
non-identification of the different families of gauge fields may be plausible if we are to treat two
different categories of electromagnetic fields appearing in the same system. The outline of this
paper is as follows: in Section 2, we present some considerations about the Cremer-Scherk-Kalb-
Ramond (CSKR) model in the supersymmetric N = 2−D = 3 scenario. In Section 3, we devote
our attention to showing the ingredients of the vortex magnetic configuration, we study the bosonic
part of our SUSY model, the equations of motion and the critical coupling. In Section 4, we study
the Bogomol’nyi equations and the minimal energy configuration of the vortex. Then, in Discus-
sions and Remarks , the relation beetwen our N = 2−D = 3 supersymmetric model with vortices
in superfluid films is discussed and we also did some highlights about others applications.

2. The N = 2−D = 3 SUSY model without truncation

In this section, we briefly review the N = 2−D = 3 model that results from the dimensional
reduction of the four-dimensinal CSKR model[30]. This model descends from the N = 1−D = 4
action that describes QED in the supersymmetric version coupled to the Kalb-Ramond field in a
non-minimal way. This non-minimal coupling is unique. To see this, consider the pure Kalb-
Ramond action coupled to an arbitrary current,

SK−R =
∫

d3x
{
−1

6
LµνκLµνκ + JµνBµν

}
, (2.1)

where Lµνκ is the field-strength 3-form. In momentum space, the field Bµν (k) ≡ B̃µν can be
expanded as follows:

B̃µν = αkµkν +βIkµeν
I + γIk

µ
eν

I +δIJeµ

I eν
J , (2.2)

where the basis vectors are taken as below:

kµ =
(

k0,
−→
k
)

; k
µ
=
(

k0,−−→k
)

; (2.3)

eµ

I = (0,−→e I) ; −→e I ·
−→
k = 0,com I = 1,2. (2.4)

With the help of the gauge symmetry for Bµν , B̃µν can be shown to acquire the form

B̃µν = δIJeµ

I eν
J . (2.5)

So, the equations of motion in momentum space read as:

k2
δIJei

Ie
j
J = J̃i j, (2.6)

nε
i jkkk = J̃i j, (2.7)

where n = k2δIJ . Equation (2.7) ensures that the current coupled to the Kalb-Ramond field is
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actually a topological current with the form:

Jµν = ε
µνκλ

∂κ jλ . (2.8)

This result denies the possiblity of writting down a symmetry group associated with the conserva-
tion of Jµν . In other words, the Yang-Mills version of the Kalb-Ramond model is not possible and
this is actually shown as a no-go result in the work of [31]. Thus we have explained the origins of
the non minimal coupling of the Kalb-Ramond theory in the N = 1−D = 4 model.

Back to the N = 2−D = 3 model [32], we write down the gauge-field sector of the bosonic
action in components as:

Sgauge =
∫

d3x{−1
4

FµνFµν + 2mε
µναAµ∂νBα (2.9)

−1
2

GµνGµν}, (2.10)

where the index µ = 0,1,2, with Fµν = ∂µAν −∂νAµ being the electromagnetic field-strength. Bµ

is the vector given by the reduction of the 4-dimensional Kalb-Ramond field, B3µ , with a corre-
sponding field-strength Gµν = ∂µBν − ∂νBµ . Another vector field, the dual of Bµν in 3D, comes
out which is defined by Bµν = εµνρZρ . Having in mind that, in (1+2)D, the Kalb-Ramond field-
strength may be written as a scalar,

Lµνκ = Sεµνκ , (2.11)

then
∂µZµ =

1
2

ε
µνκ

∂µBνκ = S. (2.12)

However, from the free field equations and the gauge transformation Z′µ = Zµ + εµνκ∂ νξ κ , S is
shown to be a constant, so that Bµν does not correspond to a physical degree of freedom, unless it
interacts with other fields.

The part of the N = 2−D = 3 action involving the scalars is written as follows:

Sscalar =
∫

d3x{e−2gM
∇µϕ(∇µ

ϕ)∗+P(ϕ)∂µM∂
µM (2.13)

+
1
2

∂µN∂
µN + 2N

(
m+gh|ϕ|2e−2gM)(

∂µZµ
)

(2.14)

−g2(∂µZµ)2|ϕ|2e−2gM + (∂µZµ)2}, (2.15)

where P(ϕ) = 1−g2|ϕ|2e−2gM. The covariant derivative, ∇µ , is given by

∇µϕ = (∂µ + ihAµ + igGµ)ϕ . (2.16)

M and N are real scalars. The dual fields, Fµ and Gµ , are given by:

Fµ =
1
2

εµνκFνκ ; Gµ =
1
2

εµνκGνκ . (2.17)

Adopting the parametrisations φ = e−gMϕ and ∂µZµ = S, we write down the remaining piece of the
bosonic action, where the auxiliary field, ∆, is present and from which we can extract the potential
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of the model. We denote it by SU and it is given by

SU =
∫

d3x {−hN|φ |2 + 2h∆|φ |2 + (2.18)

+2∆
2−4mM∆+η∆}. (2.19)

The equation of motion for the auxiliary field yields

∆ = mM− h
2
|φ |2− η

4
. (2.20)

Once it is eliminated, the potential for the physical scalars takes the form below:

U =
h2

2

(
|φ |2− 2m

h
M−ν

2
)2

−h2N2|φ |2 (2.21)

where ν2 = η

−2h . Once this potential has been built up, we are ready to discuss the symmetry-
breaking pattern that yields the vortex formation.

3. Critical coupling and field equations

The equations of motion for the fields involved in our Lagrangian density are given below:

∂ν

[(
1−g2|φ |2

)(
∂µZµ

)
+
(

m+gh|φ |2
)

N
]
= 0 (3.1)(

�+2h2|φ |2
)

N−2∂µZµ

(
m+gh|φ |2

)
= 0 (3.2)

∂µFµν +2mGν = Jν (3.3)

∂µGµν +mFν =
g

2h
ε

µκν
∂µJκ , (3.4)

where the current is Jµ = ih
(

φ ∗∇µφ − φ

(
∇µφ

)∗)
. We have three vector fields, two of them

coupled by a Chern-Simons term, and the other one coupled to a scalar field. Despite this compli-
cated mixing, Bogomoln’yi equations will be help us to understand the role of each field in vortex
formation.

Decoupling the Eqs. 3.3 and 3.4 from one another, we obtain

(�+m2)Fν = ε
µκν

∂µJκ(
gm
h

+1) (3.5)

(�+m2)Gν =
(
�− hm

g

)(
�+
−g
2h

)
Jν . (3.6)

Using the critical coupling, g =− h
m , in the previous two equations yields:(
�+m2

)
Fν = 0, (3.7)

Gν =
1

2m
Jν . (3.8)

The most general case in Eq. 3.8 involve the solution Gν +Fν = 1
2m Jν . However, we will

particularize the solution for the inhomogeneous case, then the Gµ field gives us

5



P
o
S
(
I
C
M
P
 
2
0
1
3
)
0
1
1

Vortex Formation in a U(1)×U(1)′ - N = 2 - D = 3 Supersymmetric Gauge Model Cristine N. Ferreira

ε
ναβ

∂αBβ =
1

2m
Jν . (3.9)

The value of the critical coupling, g = − h
m , reveals the purely topological character of the

current, that shall be a relevant information in our analysis of the asymptotic behavior of the field
configurations.

4. BP-states and asymptotic behavior

The explicit form of BPS-states can be worked out in a supersymmetric context. Based on that
work, we could define new supersymmetric generators as follows,

Q± = Qθ ∓ iγ0Qτ , (4.1)

where Qθ e Qτ are the Majorana-like generators for the N = 2 supersymmetry. The generators
4.1 render manifest one of the results of Houlsek and Spector [33],{

Q+,Q+

}
= 4γ

0
(

P0 +Z
)

;
{

Q−,Q−
}
= 4γ

0
(

P0−Z
)
. (4.2)

where Z it is a central charge of the extended supersymmetry.
Using these generators and setting to zero half of the fermionic variations, we can obtain BPS-

states; however, here, we shall present another approach (more heuristic) that can be used also in
the case of non supersymmetric models. To do so, we begin with the energy density of our model

E =
∫

d2x
{1

2

(
E2

i +B2
)
+P
(

e2
i +b2

)
+PS2 + e−2gM

(
D0ϕ

)∗(
D0ϕ

)
+

+e−2gM
(

Diϕ

)∗(
Diϕ

)
+P
(

∂0M
)2

+P
(

∂iM
)2

+
1
2

(
∂0N

)2
+

1
2

(
∂iN
)2

+U
}
, (4.3)

where, contrary to the work of ref. [30], the second family of gauge potentials is not truncated.
And this is one of ours proposals: to understand the role of the U (1)′ factor and its corresponding
gauge potential, Bµ , in the process of vortex formation.

Upon completion of squares,

E =
∫

d2x
{1

2

[
B∓h

(2m
h

M−|φ |2 + v2
)]2

+
1
2

(
Ei±∂iN

)2
+P
(

G0±S
)2

+P
(

Gi±∂iM
)2

+ e−2gM|
(

D0± ihN
)

ϕ|2 + e−2gM|
(

D1± iD2

)
ϕ|2

±hB
(2m

h
M−|φ |2 + v2

)
∓Ei∂iN∓2PG0S∓2PGi∂iM∓2e−2gMNH0

∓e−2gM
(1

h
εi j∂iH j +hB|ϕ|2

)
+U

}
, (4.4)

with

Hµ =− ih
2

(
ϕ
∗Dµϕ−ϕ

(
Dµϕ

)∗)
. (4.5)
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Now, we drop all quadratic terms as we are interested in the minimum energy configuration. Then,
we obtain the BPS-equations:

B∓h
(2m

h
M−|φ |2 + v2

)
= 0; (4.6)

∂µZµ = S =±G0; Ei±∂iN = 0; (4.7)

Gi±∂iM = 0;
(

∇1± i∇2

)
φ = 0. (4.8)

Introducing Eq. 4.7 in 3.1 and 3.2 we recover Eqs 3.3 and 3.4, showing that BPS-states agree with
the results from the equations of motion, as expected. It is worthy to mention that the field-strength
for the Kalb-Ramond potential becomes the topological charge.

If asympotically we write φ = veinθ , then, from equation 4.8 , we get

1
−i

φ
−1
(

∂1± i∂2

)
φ =−e±iθ n

r
,

−e±iθ n
r
= e
(

A1± iA2

)
+g
(

G1± iG2

)
. (4.9)

Therefore, in the minimum energy configuration both fields, Aµ and Gµ , participate of the vortex

formation. However, for the critical coupling
(

g =− h
m

)
and integrating Eq. 3.3, only the field that

appears in the non-minimal coupling, Gµ , is relevant for the vortex configuration:

2m
∫

d2xb = Qtop = 2mΦ f lux. (4.10)

By analyzing the critical coupling and the asymptotic behavior of Eq. 3.3, we see that the non-
minimal coupling in the covariant derivative contributes directly to the topological current, in
agreement with equation 3.9.

5. Discussions and Remarks

In this work, we have shown that the Kalb-Ramond current obeys a topological conservation
law in four dimensions. So, it seems reasonable that the coupling of the KR field to any other
model must be non-minimal. This also supports the non-existence of a non-Abelian generaliza-
tion for these theories. Our result agrees with the "no-go" theorem [31] . In the study of vortex
formation, the KR-field strength in 1+ 2 dimensions is a simple constant and it couples to the
present model as the topological charge of the vortex. This may also describe a non-trivial back-
ground. Also the non-minimal coupling of the vector field in the covariant derivative becomes
directly identified with the topological current, which seems to stabilize the topological solutions
for configuration of non-minimal energy. We analyzed how BPS-states in this model reduce the
number of differential equations and give us some insight on the role of each field whenever half of
the supersymmetry charges become zero. We see that the mixing of the minimal and non-minimal
couplings contributes for the ansatz on the scalar field, in general. However, with the critical cou-
pling, g = − h

m , only the non-minimal coupling is actually relevant for the vortex configuration.
There are relations between a global vortex in the Abelian Higgs model and vortices in a superfluid
has been exploited in [28]. This work is developed in 4D and basically two problems are found
when we try to identify them. The first difference has to do with the energy density that falls off

7
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like 1/r2 in the case of the global vortex; on the other hand, vortices in a superfluid have non-zero
energy density at infinity. The second main difference is related with the angular momentum, that
is well-defined for vortices in a superfluid, but is zero for global vortices, when considering static
configurations.These problems have been solved when Davis and Shellard [34] considered time
dependent equations and a non-trivial background, In our case, (2+1) dimensions, we can use the
anzatz Li j = Sε i j. in equations (2.11,2.12) and it gives us a constant field S that put a constraint in
the equation to the Zµ . An important fact to mention is that, in order to introduce a non-trivial back-
ground in our N = 2−D = 3 model, the SSB must also be realised by the Kalb-Ramond field. This
has been done in 4D because the scalar action and the Kalb-Ramond action are simply related by
a canonical transformation [28]. However in 3D the SSB cannot be realised by the Kalb-Ramond
field and will be entirely described by a scalar field. Another relation of our N = 2−D = 3 with
Condensed Matter concerns the gauge action that contain the copling mεµναAµ∂νBα In a lower-
dimensional Condensed Matter system, the Chern-Simons-like term in equation (2.10) could also
provide a non-trivial background. This mixing has been studied as an effective theory [35] in which
a dynamical vortex is coupled with a superfluid film at zero temperature. In the εµναAµ∂νBα -term,
the Aµ− field is chosen as the responsible for the vortex formation and the Bµ− field as the elec-
tromagnetic potential, which becomes part of the source that describes a uniform magnetic field.
Also here, time-dependent equations must be considered. For this reason our results open a new
window to study the graphene like materials and mechanisms to understand a mass gap, this subject
is the subject of the next works. We also can be studied this model related with ABJM framework
as discussed in the introduction. Finally, our perspectives are to study the possibility of having a
minimal coupling of the KR model in higher dimensions and study whether or not this coupling
is allowed in presence of a gravity background. It would also be interesting to explore further the
relation between our N = 2−D = 3 and dynamical vortices in a superfluid film
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