PROCEEDINGS OF SCIENCE

Zakharov-Shabat Systems and Conformal Immersions Induced by Dirac Spinors

[^0]
1. Introduction

In the well-known 1972 paper [1], V. Zakharov and A. Shabat applied the inverse scattering method with its associated linear Zakharov-Shabat (Z-S) system. These play a prominent and ground-breaking role in the analysis of various nonlinear evolution equations $\psi_{t}=f\left(\psi, \psi_{x}, \psi_{x x}, \psi_{x x x}, \ldots\right)$ such as sine-Gordon, modified Korteweg-de Vries (mKdV), Novikov-Veselov, or the nonlinear Schrodinger equation

$$
\begin{equation*}
i \psi_{t}+\psi_{x x}+\frac{2}{1-\alpha^{2}}|\psi|^{2} \psi=0, \quad i^{2}=-1, \quad \alpha \neq \pm 1 \tag{1.1}
\end{equation*}
$$

for example, for which a Lax pair was constructed. The method was applied earlier, and initially, for the KdV equation by C. Gardner, J. Greene, M. Kruskal, and R. Miura [2].

The Z-S system of interest here is given by

$$
\begin{align*}
r^{\prime}(x)+i \lambda r(x) & =2 p(x) s(x) \tag{1.2}\\
s^{\prime}(x)-i \lambda s(x) & =-2 p(x) r(x)
\end{align*}
$$

where generally $r(x), s(x)$ are complex-valued functions of a real variable x, the potential function $p(x)$ is real-valued, and the spectral parameter λ is complex. We also have interest in deformed solutions $r(x ; t), s(x ; t)$ of a deformed version of 1.2 for a real parameter t. For the particular choices $\lambda=i / 2, p(x)=-U(x), s(x)=r_{1}(x), r(x)=r_{2}(x)$ one obtains from 1.2 the system

$$
\begin{align*}
& r_{1}^{\prime}(x)+\frac{r_{1}(x)}{2}=2 U(x) r_{2}(x) \tag{1.3}\\
& r_{2}^{\prime}(x)-\frac{r_{2}(x)}{2}=-2 U(x) r_{1}(x)
\end{align*}
$$

which for

$$
L:=\frac{d}{d x}+\left[\begin{array}{cc}
1 / 2 & -2 U \tag{1.4}\\
2 U & -1 / 2
\end{array}\right], \quad r=\left(r_{1}, r_{2}\right)^{\top} \quad\left(\text { the transpose of }\left(r_{1}, r_{2}\right)\right)
$$

can be written as

$$
\begin{equation*}
L r=0 . \tag{1.5}
\end{equation*}
$$

Similarly for the Cauchy-Riemann operators $\partial_{z}, \bar{\partial}_{z}$ and the Dirac operator \mathcal{D} given for $z=x+i y$ by

$$
\begin{align*}
\partial_{z} & =\frac{\partial}{\partial z}:=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \tag{1.6}\\
\bar{\partial}_{z} & =\frac{\partial}{\partial \bar{z}}:=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) \\
\mathcal{D} & :=\left[\begin{array}{cc}
\partial_{z} & 0 \\
0 & \partial_{\bar{z}}
\end{array}\right]+\left[\begin{array}{cc}
0 & -U \\
U & 0
\end{array}\right] .
\end{align*}
$$

we shall also consider Dirac spinors $\psi=\left(\psi_{1}, \psi_{2}\right)^{\top}$ given by

$$
\begin{equation*}
\mathcal{D} \psi=0: \frac{\partial \psi_{1}}{\partial z}=U \psi_{2}, \quad \frac{\partial \psi_{2}}{\partial \bar{z}}=-U \psi_{1}, \quad \bar{U}=U . \tag{1.7}
\end{equation*}
$$

The bar ${ }^{-}$denotes complex conjugation as usual.
Given a Dirac spinor ψ in 1.7, B. Konopelchenko [3] has shown in fact that one can construct a conformal immersion $X=\left(X^{1}, X^{2}, X^{3}\right): \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ of a surface S in Euclidean 3-space \mathbf{R}^{3} —a construction by which the classical Weierstrass-Enneper formula/representation of minimal surfaces (the case with $U=0$) is neatly generalized. The Konopelchenko representation, which is equivalent to the K. Kenmotsu representation [4, 5], appears in earlier work also-of people like L. Eisenhart [6] and A. Bobenko [7], for example. Here the coordinate functions $X^{j}: \mathbf{R}^{2} \rightarrow \mathbf{R}$, $j=1,2,3$, the first fundamental form $d s^{2}$, the Gaussian curvature K, and the mean curvature H of S are given by the concrete formulas

$$
\begin{align*}
\frac{\partial X^{1}}{\partial z} & =i\left(\bar{\psi}_{1}^{2}+\psi_{2}^{2}\right), & \tag{1.8a}\\
\frac{\partial X^{2}}{\partial z} & =\bar{\psi}_{1}^{2}-\psi_{2}^{2}, & \tag{1.8b}\\
\frac{\partial X^{3}}{\partial z} & =-2 \bar{\psi}_{1} \psi_{2}, & u:=\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}, \tag{1.8c}\\
d s^{2}=4 u^{2}\left(d x^{2}+d y^{2}\right), & H & =\frac{U}{u} . \tag{1.9}
\end{align*}
$$

Equations $1.8 \mathrm{a}, 1.8 \mathrm{~b}, 1.8 \mathrm{c}$ are the differential version of the generalized Weierstrass-Enneper representation (the integration version) in (2) of [8] for example.

The Konopelchenko-Weierstrass-Enneper representation is a powerful tool for the analysis of Polyakov string theory problems [8]. It also has a connection to Liouville-Beltrami gravity [9], and it allows for a new approach in relating integrable systems and conformally immersed surfaces in \mathbf{R}^{3} and $\mathbf{R}^{4}[3,5,10,11]$. In [9] it is also shown that for certain constant mean density surfaces S (i.e. for $H u^{2}=a$ constant) the Polyakov extrinsic action is preserved under the modified NovikovVeselov hierarchy of flows.
V. Varlamov in [12] considers the important particular case of a surface of revolution, for which explicit fundamental solutions (Jost functions) of the Z-S system 1.2 are obtained, by way of Bargmann potentials. Integrable deformations of the corresponding explicit spinor field ψ (in the one-soliton case) are expressed by the mKdV equation. There are some trivial errors in [12] that we correct.

Given the deformed Varlamov spinor field ψ just mentioned (see equation 2.10 in Section 2 below) we compute the corresponding deformed surface S. Thus we solve the system in 1.8 (in fact, we solve a deformed version) and we compute the first fundamental form $d s^{2}$ and the Gaussian and mean curvatures K and H of S. In particular we show that H is constant when the spectral parameter λ in 1.2 is pure imaginary. As an application of our results, we consider in the final section (Section 4) classical configurations of strings in \mathbf{R}^{3}.

2. Solutions of a Deformed Z-S System

We describe the fundamental solutions (Jost functions) $\phi_{1}^{+}(x, \lambda), \phi_{2}^{+}(x, \lambda)$ of the Z-S system 1.2 constructed by Varlamov in Section 4 of [12], by way Bargmann potentials. Replacing $p(x)$ by
a suitable function $p(x ; t)$ (for a deformation variable t), we also consider his deformed solutions $\phi_{1}^{+}(x, \lambda, t), \phi_{2}^{+}(x, \lambda, t)$ of a corresponding deformed version of 1.2. As indicated in the introduction there are a few trivial errors in [12]. In particular the expressions for $\phi_{1}^{+}(x, \boldsymbol{\lambda})$ and $\phi_{1}^{+}(x, \boldsymbol{\lambda}, t)$ have a missing factor that we correct for the record.

On page 10 of [12], w and $b(x)$ should read $w=2 \alpha e^{\phi} \cosh (\mu x-\phi), b(x)= \pm 2 \mu \operatorname{sech}(\mu x-\phi)$ (rather than $w=2 e^{\phi} \cosh (\mu-\phi), b(x)= \pm 2 \mu \operatorname{sech}(\mu-\phi)$, which in fact are constants). The factor $4 \mu^{2}$ for $a(x)$ there should read 2μ instead, and the expressions for $\phi_{1}^{+}(x, \lambda), \phi_{1}^{+}(x, \lambda, t)$ in equations (15), (19) should have the denominator $\mu[2 i \lambda-\mu]$, and not just $[2 i \lambda-\mu]$ alone.

Instead of $\phi_{j}^{+}, j=1,2$, we shall work with multiples $r(x)=A \phi_{1}^{+}(x, \lambda), s(x)=A \phi_{2}^{+}(x, \boldsymbol{\lambda})$ of them, for some constant $A=2 \mu[2 i \lambda-\mu]$. Thus we express the Varlamov solution of the Z-S system 1.2 above as follows:

$$
\begin{align*}
& r(x)=e^{-i \lambda x}[2 \mu \tanh (\mu x-\phi)+4 i \lambda] \tag{2.1}\\
& s(x)= \pm 2 \mu e^{-i \lambda x} \operatorname{sech}(\mu x-\phi)
\end{align*}
$$

for

$$
\begin{equation*}
2 p(x)= \pm \mu \operatorname{sech}(\mu x-\phi) \tag{2.2}
\end{equation*}
$$

for real constants $\mu, \phi \in \mathbf{R}, \mu \neq 0$.
With 2.2 as motivation now define, for t real, $p(x ; t)$ by

$$
\begin{equation*}
2 p(x ; t)= \pm \mu \operatorname{sech}(\mu x-\phi(t)) \tag{2.3}
\end{equation*}
$$

for a suitable function $\phi(t)$. By direct differentiation with respect to x and t

$$
\begin{align*}
& 2 p_{x x x}(x ; t)+48 p(x ; t)^{2} p_{x}(x, t)=\mp \mu^{4} \tanh (\mu x-\phi(t)) \operatorname{sech}(\mu x-\phi(t)), \tag{2.4}\\
& 2 p_{t}(x ; t)= \pm \mu \dot{\phi}(t) \tanh (\mu x-\phi(t)) \operatorname{sech}(\mu x-\phi(t))
\end{align*}
$$

from whence it follows that $p(x ; t)$ is a solution of the mKdV equation

$$
\begin{equation*}
p_{t}=p_{x x x}+24 p^{2} p_{x} \tag{2.5}
\end{equation*}
$$

if

$$
\begin{align*}
& \dot{\phi}(t)=-\mu^{3}: \phi(t)=-\mu^{3} t+v, \quad v \in \mathbf{R} \tag{2.6}\\
& 2 p(x ; t):= \pm \mu \operatorname{sech}\left(\mu x+\mu^{3} t-v\right) .
\end{align*}
$$

It is now clear from 2.1, 2.2 that the functions

$$
\begin{align*}
& r(x ; t):=e^{-i \lambda x}\left[2 \mu \tanh \left(\mu x+\mu^{3} t-v\right)+4 i \lambda\right] \tag{2.7}\\
& s(x ; t):= \pm 2 \mu e^{-i \lambda x} \operatorname{sech}\left(\mu x+\mu^{3} t-v\right)
\end{align*}
$$

solve the deformed version

$$
\begin{equation*}
r_{x}(x ; t)+i \lambda r(x ; t)=2 p(x ; t) s(x ; t) \tag{2.8}
\end{equation*}
$$

$$
s_{x}(x, t)-i \lambda s(x, t)=-2 p(x ; t) r(x ; t)
$$

of 1.2 for $p(x ; t)$ defined in 2.6 , since the differentiation in 2.8 is with respect to x only, and not t. These functions are A times the functions $\phi_{1}^{+}(x, \lambda, t), \phi_{2}^{+}(x, \lambda, t)$ in [12], respectively, for the same constant $A=2 \mu[2 i \lambda-\mu]$ above. For convenience we shall denote the function of x and t in 2.7 by θ :

$$
\begin{equation*}
\theta(x, t):=\mu x+\mu^{3} t-v \tag{2.9}
\end{equation*}
$$

Now given 2.8 it follows [10, 11] that the functions ψ_{1}, ψ_{2} given by

$$
\begin{align*}
& \psi_{1}(x, y ; t):=e^{\lambda y} s(x ; t):= \pm 2 \mu e^{-\lambda i(x+i y)} \operatorname{sech} \theta(x, t) \tag{2.10}\\
& \psi_{2}(x, y ; t):=e^{\lambda y} r(x ; t):=e^{-\lambda i(x+i y)}[2 \mu \tanh \theta(x, t)+4 i \lambda]
\end{align*}
$$

(for $\theta(x, t)$ in 2.9) satisfy the system

$$
\begin{align*}
& \psi_{1_{z}}(x, y ; t)=U(x ; t) \psi_{2}(x, y ; t) \tag{2.11}\\
& \psi_{2 \bar{z}}(x, y ; t)=-U(x ; t) \psi_{1}(x, y ; t)
\end{align*}
$$

for

$$
\begin{equation*}
U(x ; t):=-p(x ; t):=\mp \frac{\mu}{2} \operatorname{sech} \theta(x, t) \tag{2.12}
\end{equation*}
$$

Thus, comparing 2.11 with 1.7 , we see that $\psi=\left(\psi_{1}, \psi_{2}\right)^{\top}$ is a deformed Dirac spinor. Here $-U$ satisfies the modified Korteweg-de Vries equation 2.5.

3. The Deformed Surface of ψ

In the introduction it was noted that a Dirac spinor $\psi=\left(\psi_{1}, \psi_{2}\right)^{\top}$ gives rise to a surface S immersed in \mathbf{R}^{3}, by work of Konopelchenko and others, where the immersion $X: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is determined by the system of equations 1.8. The formula $d s^{2}=4 u^{2}\left(d x^{2}+d y^{2}\right)$ in 1.9 shows that S is indeed conformally immersed. The main result presented here is a computation of S in the case of the deformed spinor ψ with ψ_{1}, ψ_{2} given by 2.10 . Thus we find an explicit solution $X=\left(X^{1}, X^{2}, X^{3}\right)$ of the system

$$
\begin{align*}
& X_{z}^{1}(x, y ; t)=i\left[\bar{\psi}_{1}^{2}(x, y ; t)+\psi_{2}^{2}(x, y ; t)\right] \tag{3.1a}\\
& X_{z}^{2}(x, y ; t)=\bar{\psi}_{1}^{2}(x, y ; t)-\psi_{2}^{2}(x, y ; t) \tag{3.1b}\\
& X_{z}^{3}(x, y ; t)=-2 \bar{\psi}_{1}(x, y ; t) \psi_{2}(x, y ; t) \tag{3.1c}
\end{align*}
$$

which is a deformed version of $1.8 \mathrm{a}, 1.8 \mathrm{~b}, 1.8 \mathrm{c} . \psi_{1}, \psi_{2}$ in 2.10 depend of course on the spectral parameter λ also, which first appears in the Z-S system 1.2 -which we take to be non-zero: $\lambda \in$ $\mathbf{C}-\{0\}$ as we have no interest in the trivial case.

The first step is to explicate the system 3.1 by writing out its real and imaginary parts. We write $\lambda=\lambda_{1}+i \lambda_{2}$ of course with $\lambda_{1}, \lambda_{2} \in \mathbf{R}$. Using the definition of ∂_{z} in 1.6 and the definition
of ψ_{1}, ψ_{2} in 2.10 one eventually finds that the system 3.1 is equivalent to the following system of equations:

$$
\begin{align*}
\frac{1}{2} \frac{\partial X^{1}}{\partial x} & =4 e^{F}\left\{\left[4\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)-4 \mu \lambda_{2} \tanh \theta+\mu^{2}-2 \mu^{2} \operatorname{sech}^{2} \theta\right] \sin E+4\left[2 \lambda_{1} \lambda_{2}-\mu \lambda_{1} \tanh \theta\right] \cos E\right\} \tag{3.2a}\\
-\frac{1}{2} \frac{\partial X^{1}}{\partial y} & =4 e^{F}\left\{4\left[\mu \lambda_{1} \tanh \theta-2 \lambda_{1} \lambda_{2}\right] \sin E+\left[4\left(\lambda_{2}^{2}+\lambda_{1}^{2}\right)-4 \mu \lambda_{2} \tanh \theta+\mu^{2}\right] \cos E\right\} \tag{3.2b}\\
\frac{1}{2} \frac{\partial X^{2}}{\partial x} & =4 e^{F}\left\{\left[4 \mu \lambda_{2} \tanh \theta-4\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)-\mu^{2}-2 \mu^{2} \operatorname{sech}^{2} \theta\right] \cos E+4\left[2 \lambda_{1} \lambda_{2}-\mu \lambda_{1} \tanh \theta\right] \sin E\right\} \tag{3.2c}\\
-\frac{1}{2} \frac{\partial X^{2}}{\partial y} & =4 e^{F}\left\{4\left[2 \lambda_{1} \lambda_{2}-\mu \lambda_{1} \tanh \theta\right] \cos E+\left[4\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)-4 \mu \lambda_{2} \tanh \theta+\mu^{2}\right] \sin E\right\} \tag{3.2~d}\\
\frac{1}{2} \frac{\partial X^{3}}{\partial x} & =e^{F} \operatorname{sech} \theta\left[\mp 8 \mu^{2} \tanh \theta \pm 16 \mu \lambda_{2}\right] \tag{3.2e}\\
-\frac{1}{2} \frac{\partial X^{3}}{\partial y} & =\mp 16 \mu \lambda_{1} e^{F} \operatorname{sech} \theta \tag{3.2f}
\end{align*}
$$

where we write

$$
\begin{equation*}
F:=2\left(\lambda_{2} x+\lambda_{1} y\right), \quad E:=2\left(\lambda_{1} x-\lambda_{2} y\right) \tag{3.3}
\end{equation*}
$$

for convenience, and (again) θ is given by 2.9. Here equations (3.2a, 3.2b), (3.2c, 3.2d), (3.2e, 3.2 f) are equivalent to equations $3.1 \mathrm{a}, 3.1 \mathrm{~b}, 3.1 \mathrm{c}$, respectively.

The system (3.2e, 3.2f) is the easiest, by far, to solve. A solution is given by

$$
\begin{equation*}
X^{3}(x, y ; t)= \pm 16 \mu e^{F} \operatorname{sech} \theta(x, t) \tag{3.4}
\end{equation*}
$$

for F, θ in 3.3, 2.9. A method for solving the system (3.2c, 3.2d) is analogous to that for solving (3.2a, 3.2b) so we sketch it for the latter system. It is easier to integrate equation 3.2 b with respect to y than to integrate equation 3.2 a with respect to x. One checks that for F, E in 3.3

$$
\begin{align*}
& \int e^{F} \sin E d y=\frac{e^{F}\left[\lambda_{1} \sin E+\lambda_{2} \cos E\right]}{2\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)}+f_{1}(x) \tag{3.5}\\
& \int e^{F} \cos E d y=\frac{e^{F}\left[\lambda_{1} \cos E-\lambda_{2} \sin E\right]}{2\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)}+f_{2}(x)
\end{align*}
$$

for functions of integration $f_{1}(x), f_{2}(x)$; remember that $\lambda=\lambda_{1}+i \lambda_{2} \neq 0$ by assumption. Now since $\theta(x, t)$ is independent of y, the formulas in 3.5 determine $X_{1}(x, y ; t)$, up to a knowledge of $f_{1}(x), f_{2}(x)$. One next differentiates $X_{1}(x, y ; t)$ with respect to x and uses 3.2 a, as usual. This is a bit tedious but there are some fortunate simplifications along the way. Eventually one finds that equation 3.2 a forces the condition

$$
\begin{align*}
\left(16 \mu \lambda_{1} \tanh \theta-32 \lambda_{1} \lambda_{2}\right) f_{1}^{\prime}(x) & +16 \mu^{2} \operatorname{sech} \theta\left[\lambda_{1} f_{1}(x)-\lambda_{2} f_{2}(x)\right] \tag{3.6}\\
& +\left[16\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right)-16 \mu \lambda_{2} \tanh \theta+4 \mu^{2}\right] f_{2}^{\prime}(x)=0
\end{align*}
$$

on $f_{1}(x), f_{2}(x)$-a condition that is satisfied for the choices $f_{1}(x)=f_{2}(x)=0$, or $f_{1}(x)=\lambda_{2}$, $f_{2}(x)=\lambda_{1}$, for example. We make the former choice $f_{1}(x)=f_{2}(x)=0$. In the end, again as the arguments are analogous for the system (3.2c, 3.2d), one finds that

$$
\begin{align*}
X_{1}(x, y ; t)=\frac{e^{F}}{\lambda_{1}^{2}+\lambda_{2}^{2}} & {\left[\left(32 \lambda_{1} \lambda_{2}-16 \mu \lambda_{1} \tanh \theta(x, t)\right)\left(\lambda_{1} \sin E+\lambda_{2} \cos E\right)\right.} \tag{3.7}\\
& \left.+\left(16\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)+16 \mu \lambda_{2} \tanh \theta(x, t)-4 \mu^{2}\right)\left(\lambda_{1} \cos E-\lambda_{2} \sin E\right)\right] \\
X_{2}(x, y ; t)=\frac{e^{F}}{\lambda_{1}^{2}+\lambda_{2}^{2}} & {\left[\left(16 \mu \lambda_{1} \tanh \theta(x, t)-32 \lambda_{1} \lambda_{2}\right)\left(\lambda_{1} \cos E-\lambda_{2} \sin E\right)\right.} \\
& \left.+\left(16\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)+16 \mu \lambda_{2} \tanh \theta(x, t)-4 \mu^{2}\right)\left(\lambda_{1} \sin E+\lambda_{2} \cos E\right)\right]
\end{align*}
$$

for $F=2\left(\lambda_{2} x+\lambda_{1} y\right), E=2\left(\lambda_{1} x-\lambda_{2} y\right), \theta(x, t)=\mu x+\mu^{3} t-v$.
In summary, formulas 3.4, 3.7 therefore provide for an explicit solution of the system 3.1 (or equivalently for the system 3.2) and thus for the conformal immersion $X=\left(X^{1}, X^{2}, X^{3}\right): \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ of the deformed surface S induced by the deformed Dirac spinor $\psi=\left(\psi_{1}, \psi_{2}\right)^{\top}$ given in definition 2.10 .

One can use the formulas in 1.9 with the definitions of $\left(\psi_{1}, \psi_{2}\right), U$ in 2.10, 2.12 to compute the first fundamental form $d s^{2}$, Gaussian curvature K, and mean curvature H of S. The result is the following for F, θ above and for

$$
\begin{align*}
u & :=\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}=4 e^{F}\left[\mu^{2}+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}-4 \lambda_{2} \tanh \theta\right)\right]: \tag{3.8}\\
d s^{2} & =64 e^{2 F}\left[\mu^{2}+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}-4 \lambda_{2} \tanh \theta\right)\right]^{2}\left(d x^{2}+d y^{2}\right), \tag{3.9}\\
K & =\frac{\left.-\lambda_{2} \mu^{3} e^{-2 F}\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{2}\right] \tanh \theta-\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{3}\right] \tanh ^{3} \theta+2 \mu \lambda_{2} \tanh ^{4} \theta-2 \mu \lambda_{2}\right]}{8\left[\mu^{2}+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)-4 \mu \lambda_{2} \tanh \theta\right]^{4}} \\
H & =\frac{\mp \mu e^{-F} \operatorname{sech} \theta}{8\left[\mu^{2}+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}-\mu \lambda_{2} \tanh \theta\right)\right]}=\frac{\mp \mu e^{-F}}{8\left\{\left[\mu^{2}+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\right] \cosh \theta-4 \mu \lambda_{2} \sinh \theta\right\}} .
\end{align*}
$$

4. Remarks on Classical Configurations of Strings

As an application of the results of Section 3, we consider classical configurations of strings given by the standard Nambu-Goto-Polyakov action [13, 14]:

$$
\begin{equation*}
S_{N G P}=\mu_{0} \iint \sqrt{\operatorname{det} g} d x d y+\frac{1}{\alpha_{0}} \iint H^{2} \sqrt{\operatorname{det} g} d x d y \tag{4.1}
\end{equation*}
$$

with the integration taken over a world sheet. Thus the interest is in solutions of the corresponding Euler-Lagrange equation for $S_{N G P}$ [8]:

$$
\begin{equation*}
\Delta_{L B} H+2 H\left(H^{2}-K\right)-2 \alpha_{0} \mu_{0} H=0 \tag{4.2}
\end{equation*}
$$

where $\Delta_{L B}$ is the Laplace-Beltrami operator of the metric $d s^{2}=4 u^{2}\left(d x^{2}+d y^{2}\right)$ in 1.9:

$$
\begin{equation*}
\Delta_{L B}=\frac{1}{4 u^{2}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) . \tag{4.3}
\end{equation*}
$$

Now $\sqrt{\operatorname{det} g}=4 u^{2}$ so by $1.9, H^{2} \sqrt{\operatorname{det} g}=4 U^{2}$ and $u^{2}=\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}\right)^{2}$, which means that the action in 4.1 can be expressed as

$$
\begin{equation*}
S_{N G P}=4 \mu_{0} \iint\left(\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|\right)^{2} d x d y+\frac{4}{\alpha_{0}} \iint U^{2} d x d y \tag{4.4}
\end{equation*}
$$

By the change of variables $\phi=1 / H$, Konopelchenko and Landolfi show in [8] that equation 4.2 is transformed to the equation

$$
\begin{equation*}
\phi_{z \bar{z}}+\left[2 U^{2}+\left(\log U^{2}\right)_{z \bar{z}}\right] \phi-2 \alpha_{0} \mu_{0} U^{2} \phi^{3}=0 . \tag{4.5}
\end{equation*}
$$

Here $f_{z \bar{z}}=\left(f_{x x}+f_{y y}\right) / 4$ for a function $f(x, y)$, by definition 1.6. A more general version of equation 4.5 is given in equation (6) of [15].

In our case

$$
\begin{equation*}
\phi=\mp \frac{8 e^{F}}{\mu}\left\{\left[\mu^{2}+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\right] \cosh \theta-4 \mu \lambda_{2} \sinh \theta\right\} \tag{4.6}
\end{equation*}
$$

by 3.9 , and one computes that

$$
\begin{align*}
\phi_{x x} & =\mp \frac{8 e^{F}}{\mu}\left[16 \mu \lambda_{1}^{2} \lambda_{2} \sinh \theta+\left\{\mu^{4}+4 \mu^{2}\left(\lambda_{1}^{2}-2 \lambda_{2}^{2}\right)+16 \lambda_{2}^{2}\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\right\} \cosh \theta\right] \tag{4.7}\\
\phi_{y y} & =4 \lambda_{1}^{2} \phi \\
\phi_{x x}+4 \lambda_{1}^{2} \phi & =\mp \frac{8 e^{F}}{\mu}\left[\mu^{4}+8 \mu^{2}\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)+32 \lambda_{1}^{2} \lambda_{2}^{2}+16\left(\lambda_{1}^{4}+\lambda_{2}^{4}\right)\right] \cosh \theta \\
& =\mp \frac{8 e^{F}}{\mu}\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{2}+4 \mu \lambda_{2}\right]\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{2}-4 \mu \lambda_{2}\right] \cosh \theta, \\
2 U^{2}+\left(\log U^{2}\right)_{z \bar{z}} & =0
\end{align*}
$$

for U given by 2.12. Equation 4.5 therefore reduces to the equation

$$
\begin{equation*}
\mp \frac{e^{F}}{\mu}\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{2}+4 \mu \lambda_{2}\right]\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{2}-4 \mu \lambda_{2}\right] \cosh \theta-\alpha_{0} \mu_{0} U^{2} \phi^{3}=0 \tag{4.8}
\end{equation*}
$$

Consider the simple case $\mu_{0}=0$. The first term in 4.1 (the Nambu-Goto contribution to the action) then vanishes, $S_{N G P}$ reduces to the Willmore functional [16], and equation 4.8 holds when and only when one of the brackets there vanishes: $\mu=-2 \lambda_{2} \pm 2 i \lambda_{1}, 2 \lambda_{2} \pm 2 i \lambda_{1}$. Since μ is real, this forces $\lambda_{1}=0$ so that $\lambda=i \lambda_{2}$ is pure imaginary—as in the example $\lambda=i / 2$ of the introduction where Z-S system 1.3 was derived from 1.2. Thus $\mu= \pm 2 \lambda_{2}$, and with $\lambda_{1}=0$ one has that

$$
\begin{align*}
{\left[\mu^{2}\right.} & \left.+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\right] \cosh \theta-4 \mu \lambda_{2} \sinh \theta \tag{4.9}\\
& =8 \lambda_{2}^{2} e^{\mp \theta} \\
& =8 \lambda_{2}^{2} e^{\mp\left(\pm 2 \lambda_{2} x \pm 8 \lambda_{2}^{3} t-v\right)} \quad(\text { by } 2.9) \\
& =8 \lambda_{2}^{2} e^{-2 \lambda_{2} x-8 \lambda_{2}^{3} t \pm v} \\
& =8 \lambda_{2}^{2} e^{-F} e^{-8 \lambda_{2}^{3} t \pm v} \quad(\text { by } 3.3)
\end{align*}
$$

which by 4.6 shows that

$$
\phi(x, y ; t)= \begin{cases}\mp 32 \lambda_{2} e^{-8 \lambda_{2}^{3} t+v} & \text { for } \mu=2 \lambda_{2} \tag{4.10}\\ \pm 32 \lambda_{2} e^{-8 \lambda_{2}^{3} t-v} & \text { for } \mu=-2 \lambda_{2}\end{cases}
$$

and which shows that $H=1 / \phi$ is also a constant independent of x, y.
In the pure imaginary case $\lambda=i \lambda_{2}$ the formulas $3.4,3.7$, moreover, for the immersion of S simplify:

$$
\begin{align*}
& X^{1}(x, y ; t)=-\frac{4 e^{2 \lambda_{2} x}}{\lambda_{2}}\left[4 \lambda_{2}^{2}-4 \mu \lambda_{2} \tanh \theta(x, t)+\mu^{2}\right] \sin 2 \lambda_{2} y \tag{4.11}\\
& X^{2}(x, y ; t)=-\frac{4 e^{2 \lambda_{2} x}}{\lambda_{2}}\left[4 \lambda_{2}^{2}-4 \mu \lambda_{2} \tanh \theta(x, t)+\mu^{2}\right] \cos 2 \lambda_{2} y \\
& X^{3}(x, y ; t)= \pm 16 \mu e^{2 \lambda_{2} x} \operatorname{sech} \theta(x, t)
\end{align*}
$$

Going back to the case $\mu= \pm 2 \lambda_{2}$ in 4.9 we write

$$
\begin{equation*}
e^{2 \lambda_{2} x}\left[4 \lambda_{2}^{2}-4 \mu \lambda_{2} \tanh \theta+\mu^{2}\right]=\frac{e^{2 \lambda_{2} x}}{\cosh \theta}\left[\left(4 \lambda_{2}^{2}+\mu^{2}\right) \cosh \theta-4 \mu \lambda_{2} \sinh \theta\right]=\frac{8 \lambda_{2}^{2} e^{-8 \lambda_{2}^{3} t \pm v}}{\cosh \theta} \tag{4.12}
\end{equation*}
$$

by equation 4.9. That is by 4.11

$$
\begin{align*}
& X^{1}=-32 \lambda_{2} e^{-8 \lambda_{2}^{3} t \pm v} \frac{\sin 2 \lambda_{2} y}{\cosh \theta} \tag{4.13}\\
& X^{2}=-32 \lambda_{2} e^{-8 \lambda_{2}^{3} t \pm v} \frac{\cos 2 \lambda_{2} y}{\cosh \theta} \\
& X^{3}= \begin{cases} \pm 32 \lambda_{2} \frac{e^{2 \lambda_{2} x}}{\cosh \theta} & \text { for } \mu=2 \lambda_{2} \\
\mp 32 \lambda_{2} \frac{e^{2 \lambda_{2} x}}{\cosh \theta} & \text { for } \mu=-2 \lambda_{2}\end{cases}
\end{align*}
$$

We choose $\mu=2 \lambda_{2}$, for example. Then $\theta:=2 \lambda_{2} x+8 \lambda_{2}^{3} t-v \Rightarrow e^{2 \lambda_{2} x}=e^{\theta} e^{-8 \lambda_{2}^{3} t+v} \Rightarrow X^{3}$ can also be expressed as

$$
\begin{equation*}
X^{3}= \pm 32 \lambda_{2} e^{-8 \lambda_{2}^{3} t+v} \frac{e^{\theta}}{\cosh \theta} \tag{4.14}
\end{equation*}
$$

One can also work directly with the Euler-Lagrange equation 4.2, using 3.9 and 4.3 to compute that
$\Delta_{L B} H+2 H\left(H^{2}+K\right)=\mp \mu\left(\frac{\cosh \theta}{8}\right)^{3} \frac{e^{-3 F}\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{2}+4 \mu \lambda_{2}\right]\left[4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)+\mu^{2}-4 \mu \lambda_{2}\right]}{\left\{\left[\mu^{2}+4\left(\lambda_{1}^{2}+\lambda_{2}^{2}\right)\right] \cosh \theta-4 \mu \lambda_{2} \sinh \theta\right\}^{4}}$,
where the product of brackets in 4.15 is the same product in 4.8 . Thus (again) for $\mu= \pm 2 \lambda_{2}$ with $\lambda_{1}=0, \mu_{0}=0, H$ is a constant solution of 4.2.

References

[1] V. Zakharov and A Shabat. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Soviet Phys. JETP, 34:62-69, 1972.
[2] C. Gardner, J. Greene, M. Kruskal, and R. Miura. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett., 19:1095-1097, 1967.
[3] B. Konopelchenko. Induced surfaces and their integrable dynamics. Studies in Appl. Math., 96:9-51, 1996.
[4] K. Kenmotsu. Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann., 245:89-99, 1979.
[5] B. Konopelchenko and I. Taimanov. Generalized Weierstrass formulae, soliton equations and Willmore surfaces, I. Tori of revolution and the mKdV equation, 1995. arXiv:dg-ga/9506011.
[6] L. Eisenhart. A Treatise on the Differential Geometry of Curves and Surfaces. Allyn and Bacon, 1909. also see Forgotten Books, Classical Reprint Series, 2010.
[7] A. Bobenko. Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. In Harmonic Maps and Integrable Systems, pages 83-127. Vieweg, 1994.
[8] B. Konopelchenko and G. Landolfi. On classical configurations. Mod. Phys. Letts. A, 12:3161-3168, 1997.
[9] R. Carroll and B. Konopelchenko. Generalized Weierstrass-Enneper inducing, conformal immersion and gravity. Internat. J. Mod. Physics A, 11:1183-1216, 1996.
[10] I. Taimanov. Modified Novikov-Veselov equation and differential geometry of surfaces. Trans. Am. Math. Soc., 179:133-159, 1997.
[11] I. Taimanov. Surfaces of revolution in terms of solitons. Ann. Global Anal. Geom., 15:419-435, 1997.
[12] V. Varlamov. Spinor fields on the surface of revolution and their integrable deformations via the mKdV-hierarchy, 1999. arXiv:math/9906140.
[13] A. Polyakov. Quantum geometry of bosonic strings. Phys. Letts. B, 103:207-210, 1981.
[14] A. Polyakov. Fine structure of strings. Nucl. Phys. B, 268:406-412, 1986.
[15] B. Konopelchenko. On solutions of the shape equation for membranes and strings. Phys. Letts. B, 414:58-64, 1997.
[16] T. Willmore. Riemannian Geometry. Oxford Univ. Press, 1993.

[^0]: Third International Satellite Conference on Mathematical Methods in Physics
 21-26 October, 2013
 Londrina - PR (Brazil)

