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1. Introduction and Outline.

Entanglement is one of the most fascinating aspects of quantum physics but remains mysterious
in many ways; the outcome of a local measurement is under certain conditions correlated to the
outcome of another local measurement far away. This phenomenon has been the starting point for
the development of several branches of physics, such as quantum information and communication.

A widely used measure of entanglement, is entanglement entropy. This quantity is none other
but the von Neumann entropy SA associated to a subsystem A of the total system produced by
tracing out the degrees of freedom in the complement Ac of A. For continuous systems, such as
quantum field theories (QFTs), one usually defines a subsystem by specifying a submanifold A
within the d–dimensional spacetime the QFT lives. One then intuitevely understands the entangle-
ment entropy as the entropy of an observer in A who cannot be accessed by Ac since information
is lost by “tracing over” Ac. This is somehow reminscent of black hole physics and is one of the
reasons entanglement entropy has been an active area of study for several years. Nevertheless,
the most important advances in our understanding occured fairly recently, after the “marriage” of
entanglement entropy with holography (see for instance [1, 2]).

In these lecture notes, we will present an introduction to entanglement entropy and its holo-
graphic interpretation. In section 2, we start with the definition and properties of entanglement
entropy for general QFTs. In section 3 we discuss the replica trick as a standard approach for cal-
culating entanglement entropy. In section 4 we give the prescription for calculating entanglement
entropy in conformal field theories (CFTs) with a dual description in terms of Einstein-Hilbert grav-
ity and explicitly discuss the cases where the entangling surface is an infinitely long strip or a disk.
We conclude this section with a study of entanglement entropy at finite temperature. In section 5
we relate the coefficient of the logarithmic term in entanglement entropy with the coefficients of the
conformal anomaly. This is done, after a short exposition of the methods for computing integrals
of polynomials of the curvature tensor on manifolds with conical singularities. The presentation
in 5.1 contains all the relevant information for readers interested in understanding these techniques
with other objectives, such as applications in gravitational theories. We conclude section 5 with a
computation of the coefficient of the universal term in entanglement entropy in a four dimensional
CFT for two distinct entangling surfaces, that of a disk (in 5.2) and of a cylinder (in 5.3). Next
we present a small introduction to Lovelock gravity and in section 7 we give the prescription for
computing entanglement entropy in Lovelock theories of gravity. We then explicity compute the
coefficient of the universal term in entanglement entropy of the dual CFT for entangling sufaces of
spherical and cylindrical shapes. The holographic results in sections 7.1 and 7.2 are in complete
agreement with those of sections 5.2 and 5.3 respectively.

2. Basic definition and properties of entanglement entropy.

2.1 Definition of entanglement entropy.

Consider a quantum system in its ground state |Ψ〉 and assume that the ground state has no degener-
acy. The total density matrix of the system is then ρtot. = 〈Ψ|Ψ〉 and the total entropy is vanishing,
Stot. = −Trρtot. lnρtot = 0. Let us now consider dividing the system in two subsystems A and its
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complement Ac. We will further assume that the total Hilbert space can be written as a direct prod-
uct of the Hilbert spaces associated to the two sybsystems, H = HA

⊗
HAc . Imagine an observer

who can only access one subsystem, e.g. the subsystem A. For him/her the total system will be
described by the reduced density matrix ρA, obtained from the total density matrix by tracing over
all states which belong in the Hilbert space of Ac,

ρA = TrAcρtot. . (2.1)

The same observer will then measure the von Neumman entropy

SA =−TrA(ρA lnρA) , (2.2)

which is defined as the entanglement entropy of the subsystem A.
The entanglement entropy measures how much entangled or quantum a state of a given system

is. In general, one can consider time-varying states and then it is necessary to specify the time t = t0
for which measurements take pace. Here we will focus on static systems and will not discuss issues
pertaining to time–dependence.

Let us illustrate the notion of entanglement entropy with a specific example. Consider two
non-interacting, binary systems A, B such that Htot. = HA

⊗
HB, and denote the respective basis

of the Hilbert spaces as {|0〉 , |1〉}A and {|0〉 , |1〉}B. A generic state of the total system is |Ψ〉 =
∑i, j ci j |i〉A

⊗
| j〉B.

Suppose that the total system is in a product state, e.g., |Ψ1〉 = |0〉A
⊗
|0〉B and compute the

entanglement entropy SA. The first step is to evaluate the reduced denisty matrix ρA

ρA = ∑
B

ρtot = ∑
i=0,1
〈i|
(
|0〉A

⊗
|0〉B

)(
A 〈0|

⊗
A

〈0|
)
|i〉= |0〉A

⊗
A

〈0| , (2.3)

which can be written

ρA =

(
1 0
0 0

)
. (2.4)

According to the definition (2.2)

SA =−TrAρA lnρA = ∑
i

ρii lnρii = 1ln1+0ln0 = 0 . (2.5)

Let us now repeat the exercise for the system in the state |Ψ2〉 = |0〉A
⊗
|1〉B−|1〉A

⊗
|0〉B√

2
. In this case,

the reduced denisty matrix is

ρA =
1
2 ∑

i=0,1
〈i|
(
|0〉A

⊗
|1〉B−|1〉A

⊗
|0〉B

)(
A 〈0|

⊗
B 〈1|−A 〈1|

⊗
B 〈0|

)
|i〉 ⇒

=
|0〉A A 〈0|+ |1〉A A 〈1|

2
,

(2.6)

and can be alternatively expressed as

ρA =

(
1
2 0
0 1

2

)
. (2.7)

The entanglement entropy is then non-vanishing and equal to

SA =−TrAρA lnρA = ln2 . (2.8)

We thus see that SA is zero whenever the system is in a product state.
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2.2 Properties of entanglement entropy.

• When the total system is in a pure state, the entanglement entropy associated to a subregion A
is equal to the entanglement entropy associated to the complement of the subregion, SA = SAc .
This is not true when the system is in a mixed state, at finite temperature for example.

• For two generic subsystems A,B the strong subadditivity inqeuality holds

SA +SB ≥ SA∪B +SA∩B (2.9)

It follows that if A,B,C are three non-intersecting regions

SB +SA∪B∪C ≤ SA∪B +SB∪C, SA +SC ≤ SA∪B +SB∪C (2.10)

• There exists a class of systems whose entanglement entropy additionaly satisfy the monogamy
property

IA,B,C = SA∪B∪C−SA∪B−SA∪C−SB∪C +SA +SB +SC ≤ 0 (2.11)

Intuitively when the entanglement entropy for a system in a specific state is monogamous,
it always decreases as the partitioning of the system increases. Curiously, monogamy is a
property of quantum field theories with holographic duals.

• Entanglement entropy is a divergent quantity in continuous systems. Intuitevely, entangle-
ment is stronger close to the boundary separating the subsystem from the whole. In generic
higher dimensional quantum field theories, the leading divergenece of the entanglement en-
tropy follows the "area" law

SA '
Area(∂A)

εd−2 + · · · , (2.12)

where ∂A denotes the boundary seperating the two regions and ε the ultraviolet cutoff (the
lattice spacing in discrete systems).

For a conformal field theory in d-spacetime dimensions one typically has the following expansion

SA =
gd−2(∂A)

εd−2 + · · ·+ g1(∂A)
ε

+g0(∂A) lnε + sA (2.13)

where the functions gi(∂A) depend only on the details of the boundary of the region A and sA

represents the finite term in the entanglement entropy. When A has a single characteristic length
scale R, e.g. A is a ball of radius R, then gi(∂A) are homogeneous functions pf degree i in R,
i.e., gi(∂A) ∝ Ri. In general the functions gi are cutoff dependent and as such can be termed non-
physical. Except for g0 which is cutoff independent and universal. It is a characteristic function of
the CFT related to coefficients of the conformal anomaly. In a two–dimensional CFT for instance,
SA is found to be [3, 4]

SA =
c
3

ln
`

ε
(2.14)

where c is the central charge of the two-dimensional CFT. Notice that the “area law” is not valid in
two spacetime dimensions.
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3. The replica trick.

Computing the entanglement entropy is a notoriously difficult task. A first principles, analytic cal-
culation of entanglement entropy has been performed only for special theories and shapes/regions1.
Aside from techniques pertaining to certain classes of theories, e.g. two–dimensional CFTs or free
theories, the generic approach to computing entanglement entropy is the “replica trick”. One first
expresses (2.2) in terms of TrρA

n for integer n, then analytically continues the expression to generic
n and finally takes the limit n→ 1.

To find an appropriate expression for entanglement entrpy in terms of ρn
A let us first rewrite SA

in terms of λ , the eigenvalues of the reduced density matrix ρA,

SA =−TrAρA lnρA =−∑
λ

λ lnλ . (3.1)

Assuming that it is possible to define ρn
A for integer n and then analytically continue to all n, we

can easily show that the following expressions are equivalent and equal to eq. (3.1)

SA =− lim
n→1

n
∂

∂n
TrAρ

n
A (3.2)

SA =− lim
n→1

n
∂

∂n
lnTrAρ

n
A (3.3)

SA =− lim
n→1

TrAρn
A

n−1
(3.4)

SA =− lim
n→1

(
∂

∂n
−1
)

lnTrAρ
n
A . (3.5)

Before explaining how these identities can be used to compute entanglement entropy, let us see
why they are true.

It is easy to understand why eq. (3.2) is valid. Simply express Trρn
A in terms of its eigenvalues

Trρn
A = ∑λ n to find that

− lim
n→1

n
∂

∂n
TrAρ

n
A =− lim

n→1

∂

∂n ∑λ
n =− lim

n→1
n∑λ

n lnλ =−∑λ lnλ . (3.6)

Eq.(3.3) can then be proven, with the help of eq.(3.2) and the identity TrρA = 1. Starting from (3.3)
and the identity TrρA = 1 leads to (3.4), i.e.,

− lim
n→1

∂

∂n
(lnTrAρ

n
A−n lnTrAρA) =− lim

n→1

(
∂

∂n
lnTrAρ

n
A− lnTrAρA

)
=

=− lim
n→1

(
∂

∂n
−1
)

lnTrAρ
n
A .

(3.7)

Finally, we can show eq.(3.5), starting from eq.(3.3) and using the definition of the derivative
operator

− lim
n→1

n
∂

∂n
lnTrAρ

n
A =− lim

n→1
lim

α−1→0

lnTrρn+α−1
A − lnTrρn

A
α−1

=− lim
α→1

lnTrρα

α−1
. (3.8)

1For results in two–dimensional CFTs the reader is advised to consult [5]. For a review in free field theories see [6]
and for spherical entangling surfaces in particular [7, 8, 9].
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As previously mentioned, the replica trick instructs us to compute Trρn
A and then use either of

the identities above to evaluate SA. We will show how to do this in the path integral formalism. For
reasons of convenience, we will consider a theory living in two spacetime dimensions and a region
A being the interval x ∈ [u,v] at τ = 0 in flat Euclidean space with coordinates (x,τ) ∈ R2.

Before writting down the path integral expression for ρA and ρn
A it is useful to recall how to

write the thermal density matrix for the same system at temperature T ≡ β−1, namely,

[ρ]
φφ ′ = ρ

(
{φ(x)}|{φ ′(x′)}

)
=

= Z−1(β )
∫

[Dφ(y,τ)]e−S
Πx′δ

(
φ(y,0)−φ

′(x′)
)

δ (φ(y,τ)−φ(x)) ,
(3.9)

where the Euclidean action is S =
∫ β

0 L dτ dx with L the Lagrangian of the system. The normal-
ization factor Z is the partition function Z(β ) = Tre−βH which ensures that Trρ = 1. Here H is
the Hamiltonian of the system. The rows and columns of the thermal density matrix are labelled
by the values of the fields at τ = 0 and τ = β which are φ(y,0) and φ(y,β ). The δ function terms
in (3.9) impose precisely these “boundary conditions”, effectively removing the integration over
{φ(x),φ ′(x′)}. The partition function Z can be obtained from the same path integral by setting
{φ(x)}= {φ ′(x′)} and integrating over φ(x). In the path integral, this has the effect of sewing the
edges of the space along τ = 0 and τ = β to form a cylinder.

Consider now the reduced density matrix ρA. It is straighforward to write down a path integral
expression for ρA starting from (3.9). One takes the limit β−1→ 0 and integrates over all {φ(x)}=
{φ ′(x′)} but only for those points x ∈ Ac. This process has the effect of producing a cut along the
interval A = (u,v) at τ = 0. The boundary conditions we need to impose are now at the points
τ+ = 0+ and τ− = 0−.

[ρA]φφ ′ =
(
{φ(x)}|{φ ′(x′)}

)
=

= Z−1
1

∫ +∞

−∞

[Dφ(y,τ)]e−S
Πx∈Aδ

(
φ(y,0+)−φ0(x)

)
δ
(
φ(y,0−)−φ0(x′)

)
,

(3.10)

where Z1 denotes the vaccuum partition function on R2 and ensures that TrAρA = 1 (see Fig.1a).
To construct ρn

A we make n-copies of (3.10)

(ρA)φ1φ ′1
(ρA)φ2φ ′2

· · ·(ρA)φnφ ′n , (3.11)

where we identify φ ′i−1 with φi and subsequently integrate over φi. Next we need to evaluate TrAρn
A.

Taking the trace amounts to identifying φ ′n with φ1 in (3.11) and integrating over all φ1(x). In this
way, Trρn

A is computed from a path integral on an n-sheeted Riemann surface Rn. This is described
pictorially in Fig.1b.

Trρn
A = Z−n

1

∫
Rn

[Dφ ]e−S ≡ Zn

(Z1)n (3.12)

We can now compute the entanglement entropy using for example, (3.5),

SA = lim
n→1

(
∂

∂n
−1
)

ln
Zn

(Z1)n (3.13)

In practice, to evaluate the path integral on Rn one usually defines twist operators (Tn,T−n =T †
n ),

with the help of which Trρn
A can be written as a two-point function Trρn

A = 〈TnT−n〉 (see [5] and

6
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Figure 1: (a) depicts the reduced density matrix ρA in the path integral representation. (b) is a pictorial
representation of Rn. This picture is reproduced here from [12].

references therein for more details on twist operators). We would like to finish this section with
a disclaimer; although the replica trick is assumed to be valid in arbitrary dimensions, it can only
be rigorously proven in two spacetime dimensions. Nevertheless, there is strong evidence that it is
true in higher dimensions (particularly from holography) and we will assume so in the following.

4. Holographic entanglement entropy.

Let us consider a d–dimensional CFT with a dual description in terms of Einstein-Hilbert gravity
in AdSd+1 spacetime (for a review on AdS/CFT see for example [10]). It is natural to expect
that entanglement entropy can be computed holographically as a geometrical quantity, in a similar
manner to thermal entropy. This is why the authors of [11, 12] conjectured that the entanglement
entropy of a spatial2 region A on the boundary of AdS is given by

SA =
1

4G(d+1)
N

∫
Σ

√
σ (4.1)

where Σ is defined as the minimal area surface which asymptotes to the boundary of the spatial
region A, (∂A).

For spherical regions in holographic CFTs, the presence of a U(1) symmetry, allows one to
map the entanglement entropy to the horizon entropy of hyperbolic black holes, and explicitly
prove the conjecture [14]. In the general case, U(1) symmetry is absent and the conformal map
exploited in [14] does not hold. Recently, however, Lewkowycz and Maldacena devised a method
to calculate the gravitational entropy of a region without U(1) symmetry [1]. With the help of the
replica trick they succeeded in proving the Ryu-Takayanagi conjecture.

Several properties of entanglement entropy are immediately obvious from Eq.(4.1). For in-
stance, when the spatial region A extends to the whole of space, entanglement entropy coincides
with statistical entropy. At finite temperature eq. (4.1) naturally reduces to the Bekenstein-Hawking

2The generalization to the covariant case is discussed in [13].
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entropy formula whereas for vanishing temperature, the dual gravitational description contains no
horizon and the entropy vanishes as it should. Other properties of the entanglement entropy like
strong subadditivity [15] or the fact that A and its complement Ac have the same entropy, are also
satisfied by the holographic EE formula.

4.1 The holographic entanglement entropy of a straight belt.

In this section we will compute the entanglement entropy of a d-dimensional CFT for a belt-
shaped region A of infinite length H and finite width ` using holography. The CFT lives on the
d–dimensional flat spacetime boundary of AdSd+1. We start by writting the ambient AdSd+1 met-
ric in a convenient parametrization, taking into account the symmetries of the problem. Here it is
simply

ds2 =
dz2−dt2 +dx2 +∑i dx2

i

z2 , i = 1,2, · · · ,d−2 . (4.2)

where z = 0 corresponds to the boundary of AdSd+1 and we set the radius of curvature of AdS to
unity, LAdS = 1. The belt has width ` along the x–direction and is infinitely extended along the rest
of the boundary spatial dimensions xi.

The induced metric hµν on a static surface within a bulk spacetime with metric gµν is given
by

hµν =
∂xρ

∂X µ

∂xσ

∂Xν
gρσ , (4.3)

where xµ are the ambient spatial coordinates and X µ the embedding ones. For the entangling
surface of the belt, symmetry allows to parametrize the surface by a single function x(z) and choose
embedding coordinates X µ ≡ (z,x2, · · · ,xd) such that

ds2
A =

∑i dx2
i

z2 +
dz2

z2

[
1+
(

∂x1

∂ z

)2
]
. (4.4)

Substituting (4.4) in (4.1) leads to

SA =
1

4Gd+1
N

∫
dd−2xdz

√
1+ ẋ2

1

zd−1 =
Hd−2

4Gd+1
N

∫
dz

√
1+ ẋ2

1

zd−1 , (4.5)

Solving the equation of motion following from (4.5) determines the entangling surface

ẋ1

zd−1
√

1+ ẋ2
1

= const. ⇒ ẋ2
1 =

z2(d−1)

z2(d−1)
∗ − z2(d−1)

(4.6)

where we conveniently expressed the constant of motion as c = z−d+1
∗ . The entangling surface dips

into the bulk all the way to z∗ which can be expressed in terms of the characteristic width ` of the
belt as follows

`

2
=
∫ l

2

0
dx1 =

∫ z∗

0
dz ẋ1 =

∫ z∗

0
dz

zd−1√
z2(d−1)
∗ − z2(d−1)

= z∗
∫ 1

0
dy

yd−1√
1− y2(d−1)

⇒

⇒ `

2
= z∗

√
πΓ

[
d

2(d−1)

]
Γ

[
1

2(d−1)

] . (4.7)

8
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The final step in computing the entanglement entropy is to evaluate (4.5) on the the entangling
surface (4.6)

SA = 2
Hd−2

4Gd+1
N

z−d
∗

∫ 1

0
dy
(

1− y2(d−1)
)− 1

2
y−(d−1) =

= 2
Hd−2

4Gd+1
N

z−d
∗

{∫ 1

ε

dy
yd−1 +

∫ 1

0

dy
yd−1

[(
1− y2(d−1)

)− 1
2 −1

]}
,

(4.8)

where we isolated the area divergent term and are left to compute

I0 =
∫ 1

0

dy
yd−1

[(
1− y2(d−1)

)− 1
2 −1

]
=

1
d−2

−
√

π

d−2

Γ

[
d

2(d−1)

]
Γ

[
1

2(d−1)

] . (4.9)

Using (4.9) leads to the final result for the entanglement entropy of a straight belt

SA =
1

4Gd+1
N

 2
d−2

(
H
ε

)d−2

− 2d−1π
d−1

2

d−2

Γ

[
d

2(d−1)

]
Γ

[
1

2(d−1)

]
d−1 (

H
`

)d−2

 . (4.10)

Restoring the units, we see that SA ∝
Ld−1

AdS
Gd+1

N
. For the case of N = 4 SU(N) Super Yang Mills (SYM)

theory we can express the overal coefficient purely in terms of gauge theory parameters. From
John Estes’s lecture notes in the same volume, we learn that graviton scattering determines the
ten–dimensional Newton’s constant to be G(10)

N ∝ α ′4g2
s , where α ′ is related to the string tension

and gs denotes the string coupling constant. The five dimensional Newton’s constant is then given
by

G(5)
N =

G(10)
N

L5
AdS Vol(S5)

=
G(10)

N

L5
AdS Vol(S5)

, (4.11)

where we used the fact that the S5 radius is equal to that of AdS5 and we applied the fomula for the
volume of hyperspheres

Vol(Sn) =
2π

n
2

Γ[n
2 ]
. (4.12)

Using eq. (4.11) and the expression for the radius of AdS in terms of the gauge coupling L4
AdS =

α ′2gsN we find that
L3

AdS

G(5)
N

=
L8

AdS π3

G(10)
N

∝ N2 , (4.13)

Let us finish this section by making the following comments on (4.10), which represents the entan-
glement entropy of a belt for a conformal gauge theory at strong ’t Hooft coupling λ = gY MN2 and
large N with a dual gravitational description:

• The expected area divergent term is the first term in brackets in (4.10). Observe that there
is no lnε-term. This implies that the finite term which behaves like

(H
`

)d−2 is physical and
independent of the cutoff ε .

• For the case of N = 4 SYM theory, where a precise dictionary exists, we find that the
entanglement entropy is independent of the ’t Hooft coupling constant and proportional to
N2, the number of degrees of freedom.

9
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4.2 The holographic entanglement entropy of a circular disk.

Here we sketch the computation of entanglement entropy for a spherical region of radius R. The
appropriate parametrization of AdSd+1 in this case is

ds2 =
dz2−dt2 +dr2 + r2dΩ2

d−2

z2 . (4.14)

Symmetry allows for an entangling surface with a profile of the type z(r) so we choose embedding
coordinates X µ = (r,θ ,φ1, · · · ,φd−2) and express the induced metric on the surface as follows

ds2
EE =

dr2

z2

[
1+
(

∂ z
∂ r

)2
]
+

r2

z2 dΩ
2
d−1 . (4.15)

Substituting (4.15) into (4.1) yields

SA =
∫

dd−1X
√

h =
∫

dΩd−2
dr
r

rd−1

zd−1 . (4.16)

The equations which determine the entangling surface then read

rzz̈+(d−1)zż2 +(d−1)zż+drż2 +dr = 0 ⇒ z2(r) = R2− r2 . (4.17)

Substituting the solution (4.17) into (4.16) we evaluate the area of the entangling surface by firstly
isolating the divergences and then computing the finite part of the integral. The result is

SB =
Ld−1

AdS

Gd+1
N

gd−2

(
R
ε

)d−2

+gd−3

(
R
ε

)d−3

+ · · ·+


g1

(
R
ε

)
+g0, d = odd

g2

(
R
ε

)2

+g1 ln
R
ε
+g0, d = even

 .

(4.18)
The leading divergent term in (4.18) is proportional to the area of the spherical region in both even
and odd–dimensional CFTs. However, the universal, physical terms in the entanglement entropy
depend on the dimensionality of the spacetime where the field theory lives. In even spacetimes, a
logarithmically divergent term appears and its coefficient represents the universal contribution to
entanglement entropy. As we will show in section 5.2, the coefficient g1 is indeed physical and is
proportional to the coefficient a of the euler term in the conformal anomaly in d = 4 dimenions.
This is important since a has a special behavior along renormalization group flows [16] – its value
in the UV fixed point CFT is always greater than that of the IR fixed point. In odd dimensional
spacetimes, the logarithmically divergent term is absent and the universal term coincides with the
finite term, g0, in entanglement entropy. g0 is related to the partition function of the CFT on a
sphere [14] and it has been conjectured [17] and shown [18] to decrease along RG flows in d = 3
spacetime dimensions.

4.3 The holographic entanglement entropy of a straight belt at finite temperature.

The final example we will study in this section is the entanglement entropy of an infintely long
belt for a CFT at finite temperature. Turning on temperature in the field theory side corresponds

10
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to changing the background spacetime from pure AdSd+1 to the AdSd+1 Schwarzschild black hole
[10]. We set d = 4 for convenience. The black hole metric is

ds2 = L2
AdS

[
du2

h(u)u2 +u2

(
h(u)dt2 +

2

∑
i=1

dx2
i

)
+dx2

]
where h(u) = 1−

u4
0

u4 , (4.19)

and the position of the horizon is related to the temperature of the dual CFT through u0 = πT . The
entangling surface can be parametrized by a single function u(x) and the induced metric on the
surface reads

ds2
A = L2

AdS u2
[(

1+
1

h(u)u4

)
dx2 +dx2

2 +dx2
3

]
. (4.20)

Substituting (4.20) into (4.1) results in

SA =
L3

AdS

4G(5)
N

H2
∫ `

2

− `
2

dxu3

√
1+

u′2

u4−u4
0
. (4.21)

The integrand in (4.21) does not depend explicitly on x and solving for the profile u(x) yields

u′(x) =
[
(u4−u4

0)

(
u6

u6
∗
−1
)] 1

2

. (4.22)

u∗ is related to the width ` of the belt through

`

2
=
∫

∞

u∗

du

(u4−u4
0)

1
2

(
u6

u6
∗
−1
) 1

2
=

=
1
u∗

∫ 1

0
dyy3(1− y6)−

1
2 (1− y4b4)−

1
2 =

=
1
u∗

I0(b) ,

(4.23)

where we defined a new variable y≡ u∗
u and parameter b≡ u0

u∗
and denoted by I0(b) the integral on

the second line of (4.23). Physical quantities of the dual field theory will depend on the dimension-
less ratio `πT = `u0 = 2bI0(b).

Evaluating (4.21) on the solution (4.22) yields

SA =
L3

AdS

G(5)
N

2H2
∫

∞

u∗
du

u6

(u4−u4
0)

1
2 (u6−u6

∗)
1
2
=

=
L3

AdS

G(5)
N

2H2u2
∗

∫ 1

0
dyy−3(1− y6)−

1
2 (1−b4y4)−

1
2 =

=
L3

AdS

G(5)
N

2H2 4I2
0 (b)
`2 I(b) ,

(4.24)

where we defined

I(b)≡
∫ 1

0
dyy−3(1− y6)−

1
2 (1−b4y4)−

1
2 . (4.25)

11
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The entanglement entropy of a straight belt at finite temperature is then expressed as

Ss =
L3

AdS

4G(5)
N

`H2 8I0(b)2I(b)
`3 , ⇒ Ss ∝ N2`H2u3

0

(
I(b)

b3 I0(b)

)
. (4.26)

In the final expression we have rewritten the entanglement entropy in terms of the physical variables
of the dual CFT. It is interesting to study the behavior of (4.26) at high temperatures, i.e., when
b' 1 and `' H. In the limit b→ 1 the integrals I0(b) and I(b) exhibit the same kind of divergent
behavior close to y ' 1. This observation, assuming the UV divergent behavior of I(b) at y ' 0 is
regulated, leads to

lim
b→1

I(b)
b3 I0(b)

→ 1 , (4.27)

which implies an extensive result for entanglement entropy, namely, Ss ∼ N2`H2T 3. The entangle-
ment entropy is proportional to the volume of the belt `H2. This result is in agreement with field
theoretic expectations. It is clear from the definition of entanglement entropy that it includes a con-
tribution from thermal entropy. This behavior implies that SA will have a very differnet behavior
before and after the confinement/deconfinement transition and can be used as an order parameter
[19]. Finally, the fact that entangelement entropy does not only account for quantum fluctuations,
is a generic feature of systems in a mixed state. In these cases, other measures of entanglement
must be used (e.g. entanglement negativity [20, 21]).

5. Entanglement entropy and conformal anomaly.

Consider a (d + 1)–dimensional CFT in flat space and a smooth, connected entangling surface A
which depends on a single characteristic scale R, e.g. a spherically shaped region. The change of
the entanglement entropy under a rescaling of the radius is equal to

R
d

dR
SA(R) =− lim

n→1

(
∂

∂n
−1
)

R
d

dR
lnZn , (5.1)

where Zn = Trρn
A denotes the partition function of the n–sheeted space Rn. Clearly, a rescaling of

R is equivalent to a Weyl rescaling of the metric of Rn, at least for n = 1. Here we will assume that
it is the same for any n≥ 1. Under this assumption we can rewrite (5.1) as follows

R
d

dR
SA(R) =− lim

n→1

(
∂

∂n
−1
)

2
∫

ddxgµν δ

δgµν
lnZn , (5.2)

The variation of the finite part of the effective action under Weyl rescalings is related to the expec-
tation value of the stress energy tensor

−2gµν δ

δgµν
lnZ =

√
ggµν〈T µν〉 (5.3)

which combined with (5.2) leads to

R
d

dR
S f in.

A (R) = lim
n→1

(
∂

∂n
−1
)∫

Rn

dd+1x
√

ggµν〈Tµν〉 . (5.4)

12
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In odd spacetime dimensions there is no conformal anomaly, i.e., 〈T µ

µ 〉= 0, and thus the finite part
of entanglement entropy is a constant, independent of the radius3. On even dimensional spacetimes
however, the conformal anomaly does not vanish. In fact, the conformal anomaly of a CFT on a
manifold M is equal to [22, 23]∫

M
dd+1x

√
ggµν〈Tµν〉=

∫
M

dd+1x
√

g
(
∑CiIi− (−1)

d
2 AEd

)
. (5.5)

where Ed is the d–dimensional Euler density, a topological invariant, whereas Ii are i conformal
(Weyl) invariants whose total number depends on the dimensionality of the spacetime (d+1). The
invariants are constructed out of the curvature tensors of spaces of d

2 or (d+1
2 − k)–dimensionality

and 2k covariant derivatives. Ci and A are the anomaly coefficients4.
The simplest example of a conformal anomaly is in d = 2 dimensions, where

gµν〈Tµν〉=
c

12
R (5.6)

In d = 4 dimensions on the other hand, the conformal anomaly reads

gµν〈Tµν〉=
1

64π2 90
(cI4−aE4)

I4 =W 2
µνρσ = R2

µνρσ −2R2
µν +

1
3

R2

E4 = R2
µνρσ −4R2

µν +R2

(5.7)

It is interesting to remark that for N = 4 SYM, the anomaly coefficients (c, a) are equal and
furthermore c = a ∝ N2. The same is true, namely c = a, for any CFT with a dual gravitational
description based on Einstein gravity.

It is clear from (5.5) that in flat space where curvature tensors vanish identically, conformal
invariance is not anomalous and 〈Tµν〉= 0. However, 〈Tµν〉 6= 0 for an even dimensional manifold
Rn with conical singularities. A rescaling of the characteristic length scale R then relates the finite
part of the entanglement entropy in even d–dimensions to the integrated anomaly on Rn,

R
d

dR
S f in.

A (R) = lim
n→1

(
∂

∂n
−1
)∫

Rn

dd+1x
√

g
(
∑CiIi− (−1)

d
2 AEd

)
. (5.8)

This is the main result of this subsection. A natural question arises: can we explicitly compute the
integral in (5.8)? To do so, we must know how to deal with integrals on manifolds with conical
singularities. In what follows we will describe some basic techniques for doing so.

5.1 Integrals of curvature tensors on manifolds with conical singularities.

Methods for dealing with integrals of curvature invariants e.g.,
∫

R2,
∫

R2
µνρσ , · · · on manifolds with

conical singularities have been developed over the course of several years starting with the work
of [24]. Here we will review the basic ideas; for more details the reader is advised to consult
[25, 26, 27] and references therein as well as [2] for a recent development on the subject. We will
start by discussing the case of two–dimensional spaces, and then proceed with the generalization
to arbitrary dimensions.

3Obviously, the variation under a rescaling of the characteristic length R is opposite to the variation under a rescaling
of the cutoff.

4We did not include possible regularization scheme dependent terms in 5.5.
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5.1.1 Two–dimensional cones.

The metric (rather pseudometric) of a two-dimensional cone Cn in polar coordinates is simply the
flat space metric with an angular variable of wrong periodicity, e.g.

ds2 = dr2 + r2 dτ
2, with τ ∈ (0,2πn) . (5.9)

A ’smooth" cone can be produced with a change in the periodicity of the τ–cooordinate or equiva-
lently by changing the metric component grr in (5.9) to grr = n, i.e.,

ds2 = n2dr2 + r2dτ
2 . (5.10)

Let us write the generic form of a two–dimensional space Mn with the topology of a cone as

ds2
Mn

= eσ(r) (dr2 + r2dτ
2)≡ e−σ(r) ds2

Cn
, with τ ∈ (0,2πn) . (5.11)

The conformal factor behaves in the vicinity of r = 0 as

σ(r)'r→0 σ1(τ)r2 +σ2(τ)r4 +O(r) , (5.12)

with the σi being arbitrary functions of the angular variable. A constant term is absent from (5.12)
because it can be asborbed with a redefinition of the radial variable r. The asymptotics of the
conformal factor (5.12) ensure that the conical singularity is due to the cone Cn (we will actually
have an example with a different parametrization in the following, where this is not true).

We would like to compute the integral I =
∫ √

gR on the manifold with metric (5.11). Since
the space is singular we will regularize it and compute it on the regularized space. We will then
send the regularization parameter to zero and check if the result is independent of the regulator. The
singularity in (5.11) resides in Cn, our task is thus to find a smooth analog for Cn. This is simple.
A regulated geometry C̃n can be produced by replacing grr of Cn in a region r ∈ (0,r0) close to the
singularity, with an appropriate function fn(r,b) such that lima→0 fn(r, a) = 1 and limr→0 fn(r, a) =
n. The first requirement comes from demanding that the original metric is reproduced when the
regulator is send to zero and the second from demanding that the geometry is smooth (as indicated
by (5.10)) in the presence of the regulator. There is of course a plethora of functions of this type.
Some of the choices which appeared in the literature already (e.g. [26], [1]) are the following

fn(r,a) =
r2 +b2n2

r2 +b2 (5.13)

fn(r,a) = 1+(n−1)e−
r2

a2 . (5.14)

We can now pick the regulator of our choice and evaluate the Ricci scalar curvature on the regular-
ized metric of M̃ given by

ds2
M̃ = eσ ds2

C̃
≡ eσ

(
fn(r,a)dr2 + r2dτ

2) . (5.15)

If RC̃ denotes the Ricci scalar on the regularized cone then

RM̃ = e−σ RC̃− e−σ (∇2
C̃

σ), with RC̃ =
f ′n

r f 2
n
. (5.16)
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Finally, we have that∫ √
gRM̃ =

∫
∞

0
dr r

∫ 2πn

0
dτ e−σ eσ f

1
2

n r
f ′n

r f 2
n
−
∫

∞

0

∫ 2πn

0
dr r dτ

√
fn

(
∇

2
C̃

σ

)
=

= 2πn
∫

∞

0
dr f ′n f−

3
2

n −
∫

∞

0

∫ 2πn

0
dr r dτ

√
fn

(
∇

2
C̃

σ

)
=

=−4π(n−1)−
∫

∞

0

∫ 2πn

0
dr r dτ

√
fn

(
∇

2
C̃

σ

)
.

(5.17)

Notice that the first term is independent of the regularization parameter a. The second term on
the other hand is finite when a→ 0. Moreover, it coincides with the integral of the Ricci scalar
computed on the smooth domain Mn/Σ, where Σ is the singular set at r = 0 (in our two–dimensional
example Σ is simply the point r = 0). When a→ 0 we thus find

lim
a→0

∫
M̃n

R =−4π(n−1)+
∫

Mn/Σ

R . (5.18)

Even though (5.18) is derived in two spacetime dimensions, it is true for arbitrary dimensions. In
higher dimensions however it is possible to consider arbitrary polynomials of curvature invariants
and their integrals, the computation of which might be more subtle. In particular, the result is not
in general independent of the regularization parameter.

5.1.2 Higher dimensional cones.

Consider a static, Euclidean spacetime Mn with conical singularities at r = 0 and an angular co-
ordinate ranging from τ ∈ (0,2πn). The singular codimension two surface is denoted by Σ. The
manifold Mn near the conical singularity has locally the structure of a product space Cn×Σ where
Cn is the two–dimensional cone. When this is true globally as well, the cone is called symmet-
ric and is invariant under U(1) rotations. Equivalently, Σ can be embedded in Mn with vanishing
extrinsic curvatures K(i). Otherwise, Mn is called a squashed cone and the geometry near Σ is a
warped product of Cn and Σ.

To treat the higher dimensional case, it is useful to consider a different parametrization of the
two–dimensional cone (5.9) for which

ds2
Cn

= ρ
2(n−1) (dρ

2 +ρ
2dφ

2) , with φ ∈ (0,2π) . (5.19)

As shown in [2] this parametrization allows for a unified regularization scheme for both types of
cones. Given this and that the symmetric cone is a special case of the squashed one, we will focus
on the latter.

In the vicinity of the singularity ρ = 0 the metric of the squashed cone Mn takes the form

ds2 = ρ
2(n−1) (dρ

2 + s(ρ)dφ
2)+(γµν(u,ρ)+2K(i)

µνx(i)
)

duidu j, φ ∈ (0,2π)

s(ρ) = ρ
2 +O(ρ4), γµν(u,ρ) = γµν(u)+O(ρ2) .

(5.20)

Here xi with i = 1,2 are defined as

x1 = r cosτ =
ρn

n
cosnφ , x2 = r sinτ =

ρn

n
sinnφ , (5.21)
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and K(i)
µν denotes the extrinsic curvature of Σ, i.e.,

Ki
µν = hλ

µhρ

ν

(
∇ρn(i)

λ

)
, hλ

µ = δ
λ
µ −∑

i
(n(i))µ(n(i))

λ . (5.22)

For the symmetric cone the extrinsic curvature term is absent and there is no linear term in the
expansion of the metric on Σ close to ρ = 0.

The regularized geometry M̃n can be simply written as follows

ds2 = e2An(ρ,a)
(
dρ

2 + s(ρ)dφ
2)+(γµν(u,ρ)+2K(i)

µνx(i)
)

duidu j , (5.23)

A convenient choice for the warp factor with regularization parameter a is

A =
n−1

2
ln
(
ρ

2 +a2) . (5.24)

Suppose now that we want to evaluate the integral of an invariant R, which is an order m
polynomial of components of the Riemann tensor. Just like in two dimensions, we replace (5.20)
with (5.23) and compute the integral. In the limit a→ 0 the integral behaves like [27]∫

M̃n

ddx
√

gR =
Ak

ak +
Ak−1

ak−1 + · · ·+A0 +O(a) (5.25)

where the power of the leading divergence k depends on the order m of the polynomial R. It can
be shown that for static spacetimes in the limit n→ 1 the leading behavior is given by A0 which
is proportional to (n− 1) while all other terms Ak with k > 0 are of order O((n− 1)2). Hence, in
the limit n→ 1 the result is independent of the regulator. It is this amazing fact which allows us to
explicitly calculate integrals of the type (5.25) relevant for entanglement entropy, either from the
CFT (e.g. [28]) or the holographic side (e.g. [27, 2]).

In particular, let us consider (5.8) for a four–dimensional CFT, i.e.,

R
d

dR
S f in.

A (R) = lim
n→1

(
∂

∂n
−1
)∫

Mn

dd+1x
√

g
1

90×64π2 (cI2−aE4) . (5.26)

Using the technique illustrated above one finds that∫
M̃n

d4x
√

gE4 = n
∫

M1

d4x
√

gE4 +8π(1−n)
∫

Σ

d2y
√

γRΣ +O
(
(n−1)2)

∫
M̃n

d4x
√

gI4 = n
∫

M1

d4x
√

gI4 +8π(1−n)
∫

Σ

d2y
√

γKΣ +O
(
(n−1)2) , (5.27)

where RΣ is the induced Ricci scalar on Σ, expressed in terms of the ambient spacetime Riemann
and Ricci curvature tensors and the extrinsic curvature K as

RΣ = R−2Rii−Ri ji j +K2−Tr
(
K2) , (5.28)

and KΣ is a conformal invariant defined as follows

KΣ =

(
Ri ji j−Rii +

1
3

R
)
−
(

TrK2− 1
2

K2
)
. (5.29)
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Here Ri ji j, Rii are the normal projections of the curvature tensors

Ri ji j = Rabcdna
i nb

jn
c
i nd

j , Rii = Rabna
i nb

i , (5.30)

and TrK2 = ∑i Ki
µν(K

i)µν . Finally, substituting (5.27) into (5.26) yields

R
d

dR
S f in.

A (R) =
1

90×64π2

(
8πa

∫
Σ

RΣ−8πc
∫

Σ

KΣ

)
(5.31)

We will conclude this section by explicitly computing the right hand side of (5.26) in a couple of
special cases; that of a spherical region of radius R and of an infinitely long cylinder of width R.

5.2 The universal term in the entanglement entropy of a circular disk.

We consider a CFT living on R4 which immediately implies that Ri ji j = Rii = R = 0. Moreover,
KΣ = 0 for the sphere. We thus only need to compute RΣ. We start by writting the metric of S2 as

dΩ
2
2 = R2(dθ

2 + sin2
θdφ

2) . (5.32)

The normals to Σ in flat space and the associate extrinsic curvature tensors are then

nt = 1⇒ Kt = 0

nr
2 = 1⇒ K(2)

θθ
= K(2)

φφ
= Rsin2

θ

}
⇒ TrK2 =

2
R2 , K2 =

4
R2 . (5.33)

Substituting into eq. (5.31) using (5.28) and (5.33) yields

R
R

dR
S f in.

B = lim
n→1

(
n

∂

∂n
−1
)

8π(n−1)a
90×64π2

∫ √
h
(
K2−TrK2)= a

90
, (5.34)

which gives an explicit result for the coefficient of the logarithmic term in the entanglement entropy
of a spherical region in a four dimensional CFT.

5.3 The universal term in the entanglement entropy of an infinitely long cylinder.

We focus again on a CFT living in flat space so that Ri ji j = Rii = R = 0. When the metric of the
cylinder is written as

ds2
c = dy2 +R2dφ

2 , (5.35)

the extrinsic curvatures are equal to

nt = 1⇒ Kt = 0

nr
2 = 1⇒ K2

φφ = R

}
⇒ TrK2 =

1
R2 , K2 =

1
R2 . (5.36)

Substituting into (5.31) using (5.29), (5.33) and the fact that RΣ = 0 for the cylinder yields

R
R

dR
S f in.

C = lim
n→1

(
n

∂

∂n
−1
)

8π(1−n)c
90×64π2

∫ √
h
(

1
2

K2−TrK2
)
=

c
720

`

R
. (5.37)

We thus find that the coefficient of the universal term in the entanglement entropy of an infinitely
long cylinder in a four–dimensional CFT is equal to c

720
`
R .
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Expressions (5.34), (5.37) conclude this section. In the following sections we will compute
the coefficient of the universal term in entanglement entropy holographically. We will consider
higher derivative gravitational theories, whose dual CFTs generically have a 6= c, and perform the
computation for a disk and a cylinder. We will then compare the holographic results with (5.34),
(5.37). Finally, let us point out that (5.34), (5.37) effectively propose an alternative characterization
of the conformal anomaly coefficients (a, c) through entanglement entropy as coefficients of the
logarithmic term for the entropy of two different entangling surfaces; a sphere and a cylinder.

6. Lovelock Theories of gravity and Holography.

Among all theories of gravity which contain higher derivative terms of the Riemann tensor in their
action, Lovelock gravity [29, 30, 31] is special. This class of gravitational theories stands out for
its simplicity and the properties it shares with Einstein-Hilbert gravity. In particular, it is the most
general theory of gravity whose equations of motion involve only second order derivatives of the
metric. It is also ghost free when expanded around Minkowski spacetimes. Moreover, the Palatini
and metric formulations of Lovelock gravity have been shown to be equivalent [32].

The action for Lovelock gravity in (d +1)–dimensions is

S =
1

16πGd+1
N

∫
dd+1x

√
−g

[ d
2 ]

∑
p=0

(−)p (d−2p)!
(d−2)!

λpLp , (6.1)

where Gd+1
N is the (d +1)–dimensional Newton’s constant, [d

2 ] denotes the integral part of d
2 , λp is

the p-th order Lovelock coefficient and Lp is the Euler density E2p of a 2p–dimensional manifold.
In (d +1) dimensions all Lp terms with p≥ [d

2 ] are either total derivatives or vanish identically.
In these lectures we focus on five dimensional gravitational theories and thus limit ourselves

to the Gauss-Bonnet action. This is the simplest example of a Lovelock action, which includes just
the four dimensional Euler density

S =
1

16πG(5)
N

∫
d5x
√
−gL , where L =

(
R+

12
L2 +

λL2

2
L2

)
. (6.2)

In (6.2) we introduced a cosmological constant term Λ = −12
L2 and denoted the dimensionless

Gauss-Bonnet parameter by λ instead of λ2 for simplicity. The Gauss-Bonnet term L2 in (6.2)
is equal to

L2 = E4 ≡ RMNPQRMNPQ−4RMNRMN +R2 (6.3)

The equations of motion derived from (6.2) are

−1
2

gMNL +RMN +λL2H
(2)

MN = 0 , (6.4)

with H
(2)

MN defined as follows

H
(2)

MN = RMLPQR LPQ
N −2RMPR P

N −2RMPNQRPQ +RRMN . (6.5)
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Eq. (6.4) admits AdS solutions of the form [33, 34]

ds2 =
L2

AdSdr2

r2 +
r2

L2
AdS

(
−dt2 +

3

∑
i=1

dxidxi

)
, (6.6)

where the curvature scale of the AdS space is related to the cosmological constant via5

LAdS =
L√
f∞

where 1− f∞ +λGB f 2
∞ ⇒ f∞ =

2
1+
√

1−4λ
. (6.7)

Gauss-Bonnet gravity has been extensively studied in the context of the AdS/CFT correspon-
dence. The basic aspects of the holographic dictionary established in the case of Einstein–Hilbert
gravity remain the same, since the equations of motion retain their second order form. However,
the additional parameter λ allows for a holographic CFT with unequal central charges (c,a) (recall
that all AdS backgrounds satisfying the Einstein-Hilbert equations of motion yield a = c).

There are two ways to relate the gravitational parameters, the Gauss-Bonnet coupling λ , New-
ton’s five dimensional coupling constant G(5)

N and the cosmological constant L, to the CFT param-
eters (c,a). One is via a holographic calculation of the three point function of the stress energy
tensor and the other through the holographic computation of the Weyl anomaly [35, 36] . Both
calculations yield the same result, which is a good consistency check. The holographic calculation
of the Weyl anomaly in Gauss-Bonnet gravity was performed in [37]. Here we simply quote the
results

c = 45π
L3

AdS

G(5)
N

√
1−4λ

a = 45π
L3

AdS

G(5)
N

[
−2+3

√
1−4λ

]
,

(6.8)

Here LAdS is given in (6.7) while our conventions for the CFT central charges (c,a) are defined
through the Weyl anomaly in (5.7). For the calculations of the section 7 it is convenient to express
the ratio L3

AdS

G(5)
N

and the Gauss-Bonnet coefficient, λ , as functions of the central charges (c,a)

L3
AdS

G(5)
N

=
1

90π
(3c−a) , λ =

(a−5c)(a− c)
4(a−3c)2√

1−4λ =
2c

3c−a
.

(6.9)

7. Entanglement Entropy in Lovelock gravity.

When the gravitational theory contains higher derivative terms the prescription of Ryu and Takayanagi
must be modified. A proposal for computing entanglement entropy for CFTs holographically dual
to Lovelock gravity was given in [38, 39, 40]. According to this proposal, the entanglement entropy

5To be specific, Gauss-Bonnet gravity admits another AdS solution with f∞ = 2
1−
√

1−4λ
but this solution is unstable

and contains ghosts [33].
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of a connected region A of the CFT dual to (p+ 1)–order Lovelock gravity can be computed by
minimizing the entropy functional SA given by

SA =
1

4G(d+1)
N

[ d
2 ]

∑
p=0

(−)p+1(p+1)
(d−2p−2)!

(d−2)!
λp+1

∫
Σ

√
σLp(RΣ) . (7.1)

Here the integral is evaluated on Σ, the co-dimension two surface which reduces to the boundary
(∂A) of the entangling surface at the boundary of AdS. Σ is explicitly determined by minimizing
(7.2). σ corresponds to the determinant of the induced metric on Σ whereas Lp(RΣ) is a function
of the induced curvature tensor RΣ

6.
Eq. (7.1) coincides with the expression for the entropy of black holes in Lovelock gravity as

established in [41, 25] but only when the extrinsic curvature of the horizon vanishes, i.e., K(i)
µν = 0

[39]. In fact, it was recently proven that, contrary to ones natural intuition, Wald’s entropy formula
is not the correct entropy functional for computing entanglement entropy in higher curvature gravity
[2]. For more details the reader is encouraged to consult [2] and references therein.

In what follows we will focus on five–dimensional Gauss-Bonnet gravity where eq. (7.1)
reduces to

SA =
1

4G(5)
N

∫
Σ

√
σ
(
1+λL2RΣ

)
. (7.2)

Our objective is to compute the entanglement entropy of a spherical and a cylindrical region and
compare the result of the holographic computation with eqs. (5.34), (5.37).

7.1 The entanglement entropy of a circular disk in Lovelock gravity.

To compute the entanglement entropy of a ball of radius R, it is useful to parameterize the AdS
space in the following form

ds2
AdS = L2

AdS

[
dρ2

4ρ2 +
1
ρ

(
−dt2 +dr2 + r2dΩ

2
2
)]

. (7.3)

The first step is to identify a three dimensional surface in the bulk of AdS which reduces to a sphere
of radius R at the boundary. Taking into account the symmetries of the problem we see that the
surface in question is determined by a single function r(ρ). With this ansatz the induced metric of
the surface can be written as follows

ds2
A = L2

AdS

{
1

4ρ2

[
1+4ρ

(
∂ r
∂ρ

)2
]

dρ
2 +

r2

ρ
dΩ

2
2

}
. (7.4)

Using (7.4) to compute the induced curvature RΣ and substituting into (7.2) yields

SA =
L3

AdSΩ2

4G(5)
N

∫
dρ

r2
√

1+4ρ(r′)2

2ρ2

[
1+λ f∞R̂

]
, (7.5)

6To make the variational problem well-defined a boundary term should be added in (7.2). This term does not affect
the solution of the embedding surface but it changes the value of the action evaluated on the solution and thus of the
entanglement entropy. It turns out however that the boundary term only modifies the leading UV-divergent term in the
entanglement entropy.
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where f∞ is defined in (6.7) and R̂ is the induced scalar curvature in units of the AdS radius

R̂ =
2
[
ρ +4ρ2(r′)2 +4ρr

(
r′+8ρ(r′)3−2ρr′′

)
− r2

(
3+20ρ(r′)2 +16ρ2r′r′′

)]
r2 [1+4ρ(r′)2]2

. (7.6)

To specify the coefficient of the logarithmic term it suffices to solve the equations of motion coming
from (7.5) only to the next to leading order in the neighborhood of the boundary ρ = 0. Doing so
we find that

r(ρ) = R− ρ

2R
+ · · · . (7.7)

Substituting the solution (7.7) into (7.5) yields

S(B) =
L3

AdSΩ2

4G(5)
N

∫
ε2

dρ

[
1−6λα

2ρ2 R2− 1−6λα

4ρ
+O(ρ0)

]
. (7.8)

Using (6.9) and the definition of f∞ from (6.7) we arrive at

S(B) =
a
90

R2

ε2 +
a
90

lnε + · · · , (7.9)

which is in complete agreement with (5.34).

7.2 The entanglement entropy of an infinitely long cylinder in Lovelock gravity.

Here we study the entanglement entropy of a cylindrical surface. For the holographic computation
we should find a three dimensional surface in AdS which reduces to a cylinder of radius R and
length ` on the boundary of the AdS space. A natural parametrization of AdS space in this case is

ds2
AdS = L2

AdS

[
dρ2

4ρ2 +
1
ρ

(
−dt2 +dz2 +dr2 + r2dφ

2)] (7.10)

Symmetry considerations lead us to consider a surface described by a single function r(ρ). The
induced metric on the surface is

ds2
A = L2

AdS

{
1

4ρ2

[
1+4ρ

(
∂ r
∂ρ

)2
]

dρ
2 +

1
ρ

dz2 + r2
φ

2

}
. (7.11)

Substituting (7.11) into (7.2) yields

SA =
L3

AdS

4G(5)
N

2π`
∫

dρ
r
√

1+4ρ(r′)2

2ρ2

[
1+αλ R̂

]
, (7.12)

where R̂ is again the induced curvature of the surface in units of the AdS radius

R̂ =
2
[
2ρ(r′+8ρ(r′)3−2ρr′′)− r

(
3+20ρ(r′)2 +16ρ2r′r′′

)]
r [1+4ρ(r′)2]2

. (7.13)

The equations of motions in the vicinity of ρ = 0 are solved by

r(ρ) = R− ρ

4R
+ · · · . (7.14)
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Evaluating (7.12) on the solution (7.14) yields

SA =
L3

AdS

4G(5)
N

2π`
∫

ε2
dρ

[
(1−6αλ )R

2ρ2 − 1−2αλ

16Rρ
+O(ρ0)

]
. (7.15)

With the help of (6.9) and (7.13) we finally arrive at

S(C) =
a
90

2πR`
4πε2 +

c
720

`

R
lnε + · · · . (7.16)

which again agrees with (5.37).
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