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The present paper gives a review of our recent progress and latest results for novel linear-algebraic
algorithms and its application to large-scale quantum material simulations or electronic structure
calculations. The algorithms are Krylov-subspace (iterative) solvers for generalized shifted linear
equations, in the form of (zS−H)xxx= bbb, in stead of conventional generalized eigen-value equation.
The method was implemented in our order-N calculation code ELSES (http://www.elses.jp/) with
modelled systems based on ab initio calculations. The code realized one-hundred-million-atom,
or 100-nm-scale, quantum material simulations on the K computer in a high parallel efficiency
with up to all the built-in processor cores. The present paper also explains several methodological
aspects, such as use of XML files and ‘novice’ mode for general users. A sparse matrix data
library in our real problems ( http://www.elses.jp/matrix/ ) was prepared. Internal eigen-value
problem is discussed as a general need from the quantum material simulation. The present study is
a interdisciplinary one and is sometimes called ’Application-Algorithm-Architecture co-design’.
The co-design will play a crucial role in exa-scale scientific computations.
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1. Introduction

Numerical linear algebra with large matrices is a common foundation of high-performance
scientific computations and the present paper focuses on quantum material simulations (electronic
structure calculations). Large scale electronic structure calculations, with thousand atoms or more,
are of great importance both in science and technology. So far, we have developed linear-algebraic
algorithms and the code called ‘ELSES’ [1] for large-scale calculations in nano material studies.
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

The present paper presents a review of methodologies with latest results. The present paper
is organized as follows; Sec. 2 is devoted to an overview of our study for methodologies and
application. Sec. 3 presents novel linear algebraic solvers and the benchmark of their application
on the K computer. Several methodologies used with ELSES are reviewed for two mode, ‘novice’
and ‘expert’ modes, for general users in Sec. 4 and the use of Extensible Markup Language (XML)
for input/output files in Sec. 5. As our related studies, a sparse matrix collection called ‘ELSES
matrix library’ [20] and the concept of numerical ‘engine’ [21] are explained in Sec. 6. In Sec. 7,
internal eigen-value problem is discussed, as a general need from large-scale electronic structure
calculations. In Sec. 8, physical (not mathematical) aspects of methodology is focused on, in
particular, modeled (tight-binding-form) electronic structure theory based on ab initio calculations.
The summary and outlook appear in Sec. 9.

2. Overview of methodology and application

A mathematical foundation of electronic state calculations is a generalized eigen-value equa-
tion

Ayyyk = λkByyyk. (2.1)

In the present paper, as in many cases, the matrices A and B are M×M sparse real-symmetric ones
and B is positive definite. The matrix size M is proportional to the number of atoms in the calculated
material N (M ∝ N). A standard eigen-value equation also appears among cases in which the matrix
B is reduced to the unit matrix (B = I). An eigen value λk is the energy of one electron and usually
called ‘eigen level’, while an eigen vector yyyk represents the shape of wavefunction (electronic
’wave’) for one electron. The use of dense-matrix solvers requires the computational cost is O(N3)
or proportional to N3, which will be a bottle neck in large-scale calculations. Another issue is
algorithms suitable to massive parallelism in modern supercomputers, such as the K computer.

Our methodologies are based on order-N (O(N)) theories, in which the computational cost is
proportional to N, as shown in Fig. 1(a). A fundamental theory of the order-N electronic structure
calculation is that the electronic structure calculation can be carried out, unlike conventional ones,
without eigen-value problems. [22] Other references of the order-N calculations are found, for
example, in the literature of Ref. [12]. The present calculation was carried out with modeled (tight-
binding-form) electronic structure theory based on ab initio calculations.

The present algorithms are suitable to massive parallelism and Fig. 1(b) shows recent calcu-
lations with one-hundred-million atoms on the K computer. [14, 16] A one-hundred-million-atom
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Figure 1: (a) Benchmark for the order-N scaling. [14] (b) Parallel efficiency on the K computer with
one-hundred-million atoms. ([19], present work). The calculations were carried out with the number of used
processor cores P (T = T (P)), from P = Pmin ≡ 32,768 to Pall ≡ 663,552 (all the processor cores). See the
text for details.

Figure 2: Examples of nano material study with ELSES; (a) brittleness of solid silicon, [3] (b) helical multi-
shell gold nanowire [5, 9, 10], (c) sp2-sp3 nano-composite carbon solid [16], (d) amorphous-like conjugated
polymer, [14, 19] as a foundations of opto-electronics, (e) ionic liquid of N-Methyl-N-propylpiperidinium
bis trifluoromethanesulfonyl imide [15], as a battery-related problem, (f) quantum transport of d-band metal
nanowire [6].
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calculation are called ‘100-nm-scale calculation’, because one hundred million atoms are those in
silicon single crystal with the volume of (126nm)3.

Figure 2 shows examples of nano-material studies with ELSES and related original softwares;
(a) brittleness of solid silicon [3], (b) helical multishell gold nanowire [5, 9, 10] (Experimental work
is Ref. [23]), (c) sp2-sp3 nano-composite carbon solid [16] in a research of nano-polycrystalline
diamond [24], (d) amorphous-like conjugated polymer, [14, 19] (e) ionic liquid of N-Methyl-N-
propylpiperidinium bis trifluoromethanesulfonyl imide [15], (f) quantum transport of d-band metal
nanowire [6]. The studies are motivated by the view points of (i) industrial application, (ii) new
material, especially new material from Japan, and (iii) standard material.

A Python-based visualization software ‘VisBAR’ [25, 16, 19] was also developed, since a
post-simulation analysis of large-scale simulations requires seamless procedures of large-data-size
numerical analysis and visualization. For example, Fig. 2(c) was drawn by VisBAR, when the sp2-
sp3 nano-composite carbon solid [16] was analyzed for the distinction between the sp2 (graphite-
like) and sp3 (diamond-like) domains. The analysis method is a quantum mechanical analysis
called π-type Crystalline Orbital Hamiltonian Population (πCOHP). The method is based on the
Green’s function for electronic wavefunction and a theoretical extension of COHP [26].

3. Novel linear algebraic theory and benchmark on the K computer

The mathematical foundation of our theories is based on the ‘generalized shifted linear equa-
tion’, or the set of linear equations

(zB−A)xxx = bbb, (3.1)

instead of the original generalized eigen-value equation of Eq. (2.1). Here z is a given complex
number and has a physical meaning of (complex) energy. The vector bbb is the input and the vector
xxx is the solution vector.

Recently, we have developed a set of Krylov subspace (iterative) solvers for Eq. (3.1); (i)
generalized shifted conjugate orthogonal conjugate gradient (gsCOCG) method, [12] (ii) general-
ized shifted quasi-minimal residual (gsQMR) method, [13] (iii) generalized Lanczos (gLanczos)
method, [12] (iv) generalized Arnoldi (gArnoldi) method, [12] (v) Arnoldi (M,W,G) method, [11]
(vi) multiple Arnoldi method. [14] In the case of B = I, the above theories will be reduced to
the previous ones. [2, 4] The method is purely mathematical and is applicable to other scientific
problems. For example, one of the above algorithms was applied to strongly-correlated electrons
of La2−xSrxNiO4(x = 1/3,1/2) [27, 7].

The multiple Arnoldi method [14] is mainly used in our simulations and Fig. 1 shows the re-
sult of benchmark. The calculated materials are amorphous-like conjugated polymer of poly-(9,9
dioctyl-fluorene) (aPF) [14, 19] and sp2-sp3 nano-composite carbon solid (NCCS). [16]. Figure
1(a) shows that the calculation has the order-N scaling property [14]. Figure 1(b) shows the par-
allel efficiency on the K computer with one hundred million atoms. The MPI/OpenMP hybrid
parallelism is used. The results are shown for a NCCS case with N = 103,219,200 [19] and aPF
case with N = 102,238,848 (the present work). The elapse time T of the electronic structure cal-
culation for a given atomic structure is measured as the function of the number of used processor
cores P (T = T (P)), from P = Pmin ≡ 32,768 to Pall ≡ 663,552 (the total number of processor
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cores on the K computer). The parallel efficiency is defined as α(P) ≡ T (P)/T (Pmin) and such a
benchmark is called ‘strong scaling’ in the high-performance computation society. The measured
parallel efficiency for the NCCS case is α(P= 98,304) = 0.98, α(P= 294,921) = 0.90 and α(P=

Pall) = 0.73. [19] The measured parallel efficiency for the aPF case is α(P = 196,608) = 0.98 and
α(P = Pall) = 0.56.

Figure 3: Benchmark of the ‘novice’ mode (square) and the ‘expert’ mode (circle) with N=132,864 atoms.
Fujitsu FX10 was used with P = 16, 32, 128, 512, 2048 processor cores. The calculation was carried out
with an aPF case.

4. ‘Novice’ and ‘expert’ modes for general users

A ‘novice’ or easy-to-use mode was developed, as well as an ‘expert’ mode, so as to give
comfortable user experiences for everyone. Nowadays, quantum material simulations are popular
among various researchers and many of them are not familiar to numerical algorithms and detailed
procedures of the code. Such ‘novice’ users would like to use the code easily in a satisfactory
computational performance with, typically, 103 processor cores or less. ‘Expert’ users, on the
other hand, would like to achieve the best computational performance for largest problems with a
top-class supercomputer. Therefore we developed modes for ‘novice’ and ‘expert’ users.

The ‘novice’ and ‘expert’ modes are different in the computational costs, though they are
equivalent mathematically and give the same numerical results. The ‘expert’ mode is a strict order-
N procedure and requires users to determine the detailed settings for the best performance, while
the ‘novice’ mode contains several O(N2) procedures and does not require the detailed settings.
Consequently, the ‘novice’ mode is easier to use than the ‘expert’ mode but may be worse in the
computational performance.

Figure 3 demonstrates that the performance difference between the two modes is small or
moderate with a small number of N. Figure 3 shows a benchmark of 105-atom systems with up to
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103 processor cores. The elapse time of the ‘novice’ mode is approximately 50 % larger than that
of the ‘expert’ mode.

5. Use of Extensible Markup Language (XML)

In our simulations, the main input and output files are written in the format of Extensible
Markup Language (XML), since the XML format is simple, flexible and widely used on the inter-
net. For example, the minimum information for an atom is written as follows;

<atom element="C">

<position unit="angstrom"> 1.0d0 0.0d0 0.0d0 </position>

</atom>

The above description means that a carbon atom is located at the position of (x,y,z) = (1,0,0),
where Angstrom unit (1 Angstrom = 10−10m) is used.

The method for reading XML files should be chosen properly, according to the purpose. In
our simulations, the XML files are read by two methods, Document Object Model (DOM) method
and Simple API for XML (SAX) method. In general, the DOM method is easier in programming
and results in huge memory and time consumption for large-size data, while the SAX method is
more difficult in programing and results in tiny memory and time consumption.

Two input files, configuration and structure XML files should be prepared for each simulation
and they are quite different in their file size. (i) The configuration XML file describes calculation
conditions, such as temperature of the system. A typical file consists of several tens of lines and the
file size does not depend on the system size N. The configuration file is read by the DOM method,
since its file size is always tiny. (ii) The structure XML file describes the atomic structure data, as
shown in the above example. The structure XML file is read by the DOM method, since the file size
is proportional to the system size N and can be huge. Since the atomic structure data contains three
(x,y,z) components in the double precision (8B) value for each atom, the required data size with
107 (=10M) atoms is estimated to be 3×8B×10M = 240 MB. A typical size of the structure XML
file with 107 atoms is one G byte (B). In addition, the parallel file reading is used for large-scale
calculations with split XML files for the structure file and gives a significant acceleration. [16] The
K computer and FX10 support the parallel file IO, called ‘rank directory’ function, at the hardware
level and are suitable to the parallel file reading with split XML files.

6. Sparse matrix collection and numerical ‘engine’

This section explains that we opened a matrix library and are developing a general numerical
‘engine’, for further collaboration between real application and numerical linear algebra.

Recently, a sparse matrix collection called ‘ELSES matrix library’ [20] was opened. The
stored matrices are sparse and generated by ELSES as the matrices A and B in Eq. (2.1). The
maximum matrix size M is one million. Matrix data files are written in the Matrix Market format.
[28] Each matrix data has its own name and appears with a document so as to clarify the physical
origin of the matrix. For example, the matrix data ‘VCNT900’ presents a matrix with the size of
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M = 900 and its physical origin is thermally vibrating carbon nanotube (VCNT). 1 The calculated
eigen values are also included in several matrix data.

Moreover a general numerical ’engine’ for matrix (eigen-value) equations is under develop-
ment with a common interface between real applications and numerical solvers. A mini application
for evaluating the engine, called ‘Eigen Test’, is also under development, in which the matrix data
in ELSES matrix library [20], or some files on Matrix Market [28], can be used as inputs. A code
in an early version for shared memory systems is available for test users. [21] The code for dis-
tributed memory systems is under development, in which two direct solvers, ScaLAPACK [29]
and EigenExa [30], are implemented for the standard and generalized eigen-value equations in
the Eq. (2.1) with real-symmetric matrices. 2 The implementation of Krylov subspace solvers is
planned. In near future, our application code ‘ELSES’ will be connected to the engine and gen-
eral users can use the solvers without detailed knowledge of the solver algorithms. The engine is
general and can be connected to any other real applications.

interface
(common)

solver X

solver Y

solver Z

Real application A

Real application B

Numerical ‘engine’ for matrix problems

“Eigen Test”

(mini application)

Matrix files

(in ELSES matrix library)

Figure 4: Illustration of the role of the general ‘numerical engine’ for matrix equations.

7. Internal eigen-value problem

This section explains internal eigen-value problem from a general need in large-scale elec-
tronic state calculations. The present discussion is limited to real eigen-value problems. In a
large-matrix problem, one should give up the calculation of all the eigen pairs, because of huge
computational cost. Then one would like to obtain specific eigen pair(s) (λ j,yyy j) of Eq. (2.1) at an
internal eigen-value region (1 < j < M), because several internal eigen pairs are responsible for
electronic and optical properties.

1The thermal vibration causes small random deviations on the atomic positions and, therefore, the calculated eigen
values are not degenerated.

2At the present time, EigenExa does not support generalized eigen-value problems. In the engine, a generalized
eigen-value problem is solved with EigenExa, since the problem is transformed into a standard eigen-value problem by
the Cholesky decomposition routine in ScaLAPACK.
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Figure 5: Four types of internal eigen-value problems. (I) Point given type, (II) Interval given type, (III)
Order given type, (IV) Boundary order given type.

Internal eigen-value problems can be classified into the following four types, as illustrated in
Fig. 5; (I) Point given type: For a given real value a, one should find (an) eigen value(s) λ near the
given point (λ ≈ a) and its (their) eigen vector(s). (II) Interval given type: For a given interval of
[a,b] (a < b), one should find eigen values λ in the interval (a < λ < b) and their eigen vectors.
(III) Order given type: For a given integer of j (1 < j < M), one should find the j-th lowest eigen
value λ j (· · ·λ j−1 ≤ λ j ≤ λ j+1 · ··) and its eigen vector. (IV) Boundary order given type: For a given
integer j (1 < j) and a real value a, one should find the j-th lowest eigen value λ (a)

j that is larger
than a:

· · · ≤ λ (a)
−1 ≤ a ≤ λ (a)

1 ≤ λ (a)
2 ≤ · · ·λ (a)

j ≤ λ (a)
j+1 · ·· (7.1)

One should find all the (degenerated) eigen vectors for the target eigen value λ (a)
j . From the def-

initions, the boundary-order-given-type problem with a < λ1 is reduced to the order-given-type
problem. In all the types of problem, if the target eigen value is degenerated, one should find all
the degenerated eigen vectors.

The present paper focuses on the order-given-type problem, since the problem appears in many
electronic structure calculations. In our problems, the target eigen value(s) is (are) given from the
physical viewpoint. Here we call eigen value ‘level’, as usual in electronic structure calculations.
Typically, the two levels, called highest-occupied (HO) and lowest-unoccupied (LU) levels, are
of fundamental interest. The HO level, denoted as j hereafter, is defined as the half of the total
number of electrons in material Ne ( j ≡ [Ne/2]) 3 and the LU level is defined as j+1. For example,
the difference between the two levels ∆ ≡ λ j+1 −λ j is called energy gap and is zero in metals and
non-zero in semiconductors or insulators. Two notes are added here; (a) The levels near the HO or

3The present case is that of a para-spin material.
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LU level are also of importance and are required in many electronic state calculations. (b) When
N is odd, the HO and LU levels are not defined in a strict physical sense. Among these cases,
however, the ( j ≡ [Ne/2]])-th and ( j+1)-th levels are still crucial for electronic properties and we
call them the HO and LU levels in the present paper.

We have proposed two approaches for the order-given-type problem: One appears in Refs. [17,
18] and the other appears in Ref. [19]. See the papers for details.

Further investigations on efficient algorithms are desired for internal eigen-value problems. It
is speculated that a difficulty in numerical treatment will appear among (almost) degenerated eigen
pairs. An example is found in the matrix of ‘APF4686’ of ELSES matrix library [20], in which the
2345-th and 2346-th eigen values are almost degenerated (λ2345=-0.356883, λ2346= -0.356806). 4

(a)

(b)

(d)(c)

Energy [eV]

D
O

S
 

benzene

 HO/LU

momomer 
    HO/LU

2-2 0 4 6 8 10

‘9’

(e) (f)

(g) (h)

Figure 6: (a) Structure of poly-(9,9 dioctyl-fluorene). Here R ≡ C8H17 and n is the number of monomer
units. The letter ‘9’ indicates the atom site called ‘9 position’. (b) DOS of the monomer (red line) and
benzene (blue line). The value of the latter graph is magnified twice. (c)(d) Schematic figures of the HO
or LU wavefunction of the dimer, respectively. (e)(f) The calculated dimer structure and the HO or LU
wavefunctions, respectively. The large and small balls indicate carbon and hydrogen atoms. The colors
indicates the sign of the wavefunction in (c)-(h).

8. Physical aspect of the fundamental methodologies

The last topic is some physical (not mathematical) aspects of the fundamental methodology,
in particular, ab initio based modelings in electronic structure theory. The present calculation was

4The atomic unit is used in the present eigen values
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carried out with modeled (tight-binding-form) electronic structure theory based on ab initio calcu-
lations and sometimes a charge-self-consistent theory [31] is also used [15, 32]. The matrices A
and B in Eqs.(2.1) and (3.1) are sparse and called the Hamiltonian and overlap matrices written the
linear-combination-of-atomic-orbital (LCAO) representation, respectively. The diagonal elements
of B are the unity (Bii = 1) and the absolute value of an off-diagonal element is less than the unity
(|Bi j|< 1, i ̸= j).

Here poly-(9,9 dioctyl-fluorene), a conjugated polymer depicted in Fig. 6(a), is picked out.
The material is a basic one for opto-electronics devices. A modeled theory in Ref [33] is used and
it is called the atomic-superposition and electron-delocalization tight-binding (ASED-TB) theory.
The monomer unit in Fig. 6(a) consists of two benzene rings and alkyl side chains of R ≡ C8H17.
The letter ‘9’ indicates the atom site called ‘9-position’, located at the ‘root’ part of the side chain
or the top site of the five-membered ring. The side chains are extended transversely, since the ‘9-
position’ in Fig. 6(a) has an sp3-like electronic configuration and the neighboring four atoms form
tetrahedral bonds.

The monomer and dimer were calculated with the exact solution of Eq. (2.1). The density
of states (DOS) function, a eigen-value histogram, is shown in Fig. 6(b) for the monomer and
a benzene molecule (C6H6). The HO and LU electronic wavefunctions of the dimer are drawn
schematically in Fig. 6(c)(d), respectively and the calculated HO and LU wavefunctions with the
optimized structure are shown in Fig. 6(e)(f), respectively. The two monomer units of the dimer
are connected with twisting, as shown in Fig. 6(e) or (f), mainly because of the repulsion between
the hydrogen atoms on the benzene rings of the neighboring monomers. The half of Fig. 6(c) or (d)
corresponds to the schematic figure of the HO or LU state of the monomer, [34] respectively. The
wavefunctions are contributed only by the π-type wavefunctions on the benzene rings. The HO
wavefunction of the dimer and the monomer has two nodes on a benzene ring, and the LU wave-
function of the dimer and the monomer has four nodes on a benzene ring. These node structures
are the same with those of a benzene, [34] because the HO and LU levels of the monomer stem
from those of benzene, which is seen in the DOS functions of Fig. 6(b). The monomer and dimer
are calculated also by the ab initio calculation (Gaussian 09(TM)) with the B3LYP functional and
the 6-31G(d,p) basis set and the above features of wavefunctions are satisfied in the calculated HO
and LU wavefunctions shown in Figs. 6(g)(h). The atomic structures and the DOS functions were
also calculated and satisfy the above features. Moreover, detailed data by the present method are
added here with those by the ab initio calculation in the parentheses; [14] The balance band width
W and the band gap ∆ are W = 18.5 eV (18.3 eV) and ∆ = 4.25 eV (4.91 eV) in the monomer and
W = 19.0 eV (18.8 eV) and ∆ = 3.58 eV (4.10 eV) in the dimer. The twisting angle of the dimer θ
is θ = 37.3◦ (40.6 ◦).

Several notes are posted on the transferability (general applicability) of model theories; (i)
The present theory is formulated without any data of fluorene cases but is formulated with related
small molecules such as benzene. The above agreement with the ab initio calculations in the
fluorene cases shows that the theory is applicable to, at least, materials that have similar binding
mechanisms. (ii) Quite recently, a modeled van der Waals (vdW) interaction [35] is implemented in
the code for wider applicability to materials. Details will be discussed elsewhere. (iii) Automated
determination methods for obtaining an optimal model among various materials is desired and is
now developing with ELSES [32, 36].
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9. Summary and future outlook

The present paper reports our methods and results of large-scale electronic structure calcu-
lations based on our novel linear algebraic algorithms. A high parallel efficiency was shown in
one-hundred-million-atom systems with up to all the built-in cores of the K computer. The related
methodologies on physics, mathematics and information technology are also discussed.

The present study is a interdisciplinary one between physics, numerical linear algebra and
high-performance computation techniques, and such a interdisciplinary study is sometimes called
’Application-Algorithm-Architecture co-design’. The co-design will play a crucial role in exa-scale
scientific computations.

Acknowledgments

This research is partially supported by Grant-in-Aid for Scientific Research (KAKENHI Nos.
23540370 and 25104718) from the Ministry of Education, Culture, Sports, Science and Technology
(MEXT) of Japan. The K computer was used in the research proposals of hp120170, hp120280 and
hp130052. Several calculations were carried out by the supercomputer at the Information Technol-
ogy Center, University of Tokyo, in the research proposal of jh130011-NA07. Supercomputers
were also used at the Institute for Solid State Physics, University of Tokyo, and at the Research
Center for Computational Science, Okazaki.

References

[1] ELSES(=Extra Large-Scale Electronic Structure calculation): http://www.elses.jp/

[2] R. Takayama, T. Hoshi and T. Fujiwara, Krylov subspace method for molecular dynamics simulation
based on large-scale electronic structure theory , J. Phys. Soc. Jpn.73 (2004) 1519.
[cond-mat/0401498]

[3] T. Hoshi, Y. Iguchi, and T. Fujiwara, Nanoscale structures formed in silicon cleavage studied with
large-scale electronic structure calculations: Surface reconstruction, steps, and bending, Phys. Rev.
B 72 (2005) 075323. [cond-mat/0409142]

[4] R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, and T. Fujiwara, Linear algebraic calculation of the
Green’s function for large-scale electronic structure theory , Phys. Rev. B 73 (2006) 165108.
[cond-mat/0503394]

[5] Y. Iguchi, T. Hoshi, T. Fujiwara, Two-stage formation model and helicity of gold nanowires Phys.
Rev. Lett. 99 (2007) 125507. [cond-mat/0611738]

[6] H. Shinaoka, T. Hoshi and T. Fujiwara, Ill-Contact Effects of d-Orbital Channels in Nanometer-Scale
Conductor, J. Phys. Soc. Jpn. 77 (2008) 114712. [cond-mat/arXiv:0809.3078]

[7] S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang and T. Fujiwara, Shifted
Conjugate-Orthogonal-Conjugate-Gradient Method and Its Application to Double Orbital Extended
Hubbard Model , J. Phys. Soc. Jpn. 77 (2008) 114713. [cond-mat/arXiv:0802.2790]

[8] T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, On a weighted quasi-residual minimization
strategy of the QMR method for solving complex symmetric shifted linear systems , Electron. Trans.
Numer. Anal. 31 (2008) 126.

11



P
o
S
(
I
W
C
S
E
 
2
0
1
3
)
0
6
5

Novel linear algebraic theory and one-hundred-million-atom quantum material simulations ... Takeo Hoshi

[9] T. Hoshi, T. Fujiwara, Domain boundary formation in helical multishell gold nanowire , J. Phys.:
Condens. Matter 21 (2009) 272201. [cond-mat/arXiv:0808.1353]

[10] T. Hoshi,Y. Iguchi and T. Fujiwara, Ultrathin gold nanowires, Handbook of Nanophysics :
Nanotubes and Nanowires , Ed. Klaus D. Sattler, CRC Press, pp.36.1-18, (2010).

[11] T. Yamashita, T. Miyata, T. Sogabe, T. Fujiwara, S.-L. Zhang, An Arnoldi (M, W, G) Method for
Generalized Eigenvalue Problems, Trans of JSIAM 21 (2011) 241 (Japanese).

[12] H. Teng, T. Fujiwara, T. Hoshi, T. Sogabe, S.-L. Zhang, and S. Yamamoto, Efficient and accurate
linear algebraic methods for large-scale electronic structure calculations with nonorthogonal atomic
orbitals, Phys. Rev. B 83 (2011) 165103. [cond-mat/arXiv:1101.4768]

[13] T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara, Solution of generalized shifted linear systems with
complex symmetric matrices, J. Comp. Phys. 231 (2012) 5669.

[14] T. Hoshi, S. Yamamoto, T. Fujiwara, T. Sogabe, S.-L. Zhang, An order-N electronic structure theory
with generalized eigenvalue equations and its application to a ten-million-atom system, J. Phys.:
Condens. Matter 21 (2012) 165502. [cond-mat/arXiv:1202.0098]

[15] S. Nishino, T. Fujiwara, H. Yamasaki, S. Yamamoto, T. Hoshi, Electronic structure calculations and
quantum molecular dynamics simulations of the ionic liquid PP13-TFSI, Solid State Ionics 225
(2012) 22.

[16] T. Hoshi, Y. Akiyama, T. Tanaka and T. Ohno, Ten-million-atom electronic structure calculations on
the K computer with a massively parallel order-N theory, J. Phys. Soc. Jpn. 82 (2013) 023710.
[cond-mat/arXiv:1210.1531]

[17] D. Lee, T. Miyata, T. Sogabe, T. Hoshi, S.-L. Zhang, An interior eigenvalue problem from electronic
structure calculations, Japan J. Indust. Appl. Math. 30 (2013) 625-633.

[18] D. Lee, T. Miyata, T. Hoshi, and S.-L. Zhang, An interior eigenvalue problem and its numerical
solution, in The 9th East Asia SIAM Conference The 2nd Conference on Industrial and Applied
Mathematics (EASIAM-CIAM 2013) , Institut Teknologi Bandung, Bandung, West Java, Indonesia,
18-20., June. 2013

[19] T. Hoshi, K. Yamazaki, Y. Akiyama, Novel linear algebraic theory and one-hundred-million-atom
electronic structure calculation on the K computer, in press,
[http://arxiv.org/abs/1307.3218].

[20] ELSES matrix library: http://www.elses.jp/matrix/

[21] Eigen Test: http://www.damp.tottori-u.ac.jp/~hoshi/eigen_test/

[22] W. Kohn, Density functional and density matrix method scaling linearly with the number of atoms .
Phys. Rev. Lett. 76 (1996) 3168.

[23] Y. Kondo and K. Takayanagi, Synthesis and characterization of helical multi-shell gold nanowires ,
Science 289 (2000) 606.

[24] T. Irifune, A. Kurio, A. Sakamoto, T. Inoue, and H. Sumiya, Materials: Ultrahard polycrystalline
diamond from graphite , Nature 421 (2003) 599.

[25] VisBAR(=Visualization tool with Ball, Arrow and Rods):
http://www.damp.tottori-u.ac.jp/~hoshi/visbar/

[26] R. Dronskowski , P. E. Blöchl, Crystal orbital Hamilton populations (COHP): energy-resolved
visualization of chemical bonding in solids based on density-functional calculations , J. Phys. Chem.
33, 97 (1993); http://www.cohp.de/

12



P
o
S
(
I
W
C
S
E
 
2
0
1
3
)
0
6
5

Novel linear algebraic theory and one-hundred-million-atom quantum material simulations ... Takeo Hoshi

[27] S. Yamamoto, T. Fujiwara, and Y. Hatsugai, Electronic structure of charge and spin stripe order in
La2−xSrxNiO4(x = 1/3,1/2) , Phys. Rev. B 76 (2007)165114.

[28] Matrix Market: http://math.nist.gov/MatrixMarket/

[29] ScaLAPACK: http://www.netlib.org/scalapack/

[30] EigenExa: http://www.aics.riken.jp/labs/lpnctrt/EigenExa_e.html

[31] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, G. Seifert,
Self-consistent-charge density-functional tight-binding method for simulations of complex materials
properties, Phys Rev B 58 (1998) 7260.

[32] S. Nishino and T. Fujiwara, Parametrization scheme with accuracy and transferability for
tight-binding electronic structure calculations with extended Hückel approximation and molecular
dynamics simulations, J. Mol. Model. 19 (2013) 2363.

[33] G. Calzaferri and R. Rytz, The Band Structure of Diamond, J. Phys. Chem. 100, 11122 (1996).

[34] The HO and LU wavefunctions of benzene are found in elementary textbooks, such as, P. W. Atkins,
R. S. Friedman, Molecular Quantum Mechanics, fifth ed., Oxford University Press, Oxford (2010).

[35] F. Ortmann and F. Bechstedt and W. G. Schmidt, Semiempirical van der Waals correction to the
density functional description of solids and molecular structures, Phys Rev B 73 (2006) 205101.

[36] Y. Ohtani, T. Fujiwara, S. Nishino, T. Suzuki, S. Yamamoto and Y. Zempo, Automatic determination
of tight-binding parameters in bulk systems, MRS Proceedings 1523 (2013) mrsf12-1523-qq06-08

13


