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We discuss a variable flavor number scheme (VENS) for final state jets which can account for the
effects of arbitrary finite quark masses in inclusive jet observables. The scheme is a generalization
of the VENS scheme for PDFs applied to setups with additional dynamical scales and relies
on appropriate renormalization conditions for the matrix elements in the factorization theorem.
We illustrate general properties by means of the example of deep-inelastic scattering (DIS) in
the endpoint region x — 1 and event shapes in the dijet limit, in particular the calculations of
threshold corrections, consistency conditions and relations to mass singularities found in fixed-

order massive calculations.
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1. DIS in the classical OPE region

The systematic treatment of massive quark effects in DIS plays an important role in the pre-
cise determination of parton distribution functions (PDFs). First we briefly summarize the crucial
ingredients for a VENS in the phenomenologically more important region 1 —x ~ (1), before we
discuss the endpoint region x — 1 investigated in [1]. We refer to [2] for a short overview about
different implementations in literature in the OPE region.

The factorization theorem for the structure functions in DIS for massless quarks reads

Fo~ Y & Y / ( ,u>f,/p(é w. (1.1)

i=q,9  J=4,q.8

Here the sums are performed over all quark flavors with corresponding charge e,. The hard match-
ing coefficients H;;(x, ) correspond to the difference between the partonic full QCD results and
corresponding low-energy expressions below the hard momentum transfer scale Q > Agcp which
can be described conveniently using Soft-Collinear Effective Theory (SCET) [3]. Since both the-
ories contain the same IR behavior, the sensitivity to low-energy scales cancels in the hard match-
ing. In the framework of SCET the PDFs f;/,(x, t) are matrix elements of operators described by

collinear fields. Renormalizing them in the MS scheme, as common for massless partons, yields
the DGLAP equations for the renormalization group evolution (RGE) summing the logarithms be-
tween the characteristic renormalization scale of the PDFs iy ~ Aqgcp and the scale of the hard
interaction Uy ~ Q.

In the following we consider a setup with n; massless flavors and one heavy quark with mass
m > Aqcp, which we want to incorporate in the factorization theorem in Eq. (1.1)." A VFENS
should satisfy the following features: (i) it has to sum all large logarithms between the mass, the
hard scale and Agcp, and (ii) to recover the correct limiting behavior, i.e. the decoupling limit for
m > Q and the massless limit for m < Q. A VENS valid for arbitrary quark masses should contin-
uously interpolate between these two limits (iii), also because in practice large hierarchies between
the hard scale and the mass scale are rarely reached. This has been achieved in the scheme by
ACQOT [4], which we illustrate in Fig. 1. The crucial ingredient is the use of proper renormalization
conditions for the strong coupling and the PDFs [5]. Below the mass scale on-shell (OS) renormal-
ization is employed for the virtual massive quark corrections corresponding to a low-momenutum
subtraction, whereas above the mass scale one uses MS renormalization. In particular, for m > Q,
where always OS subtraction is used, this implies that the RGE for the PDFs and ¢ is performed
just with the n; massless flavors and the decoupling limit for the hard matching coefficients H;; is
manifest for m > Q. On the other hand, for m < Q the renormalization scheme is switched from
OS to MS at the scale u,, ~ m. Taking into account that the quark mass does not affect the UV
divergences this entails that the RGE is performed with the n; + 1 flavors above u,, and with n;
flavors below p,,. Due to the fact that IR mass logarithms cancel between full QCD and the effec-
tive theory description, the hard matching coefficients H;; smoothly approach the massless limit for
m — 0. The difference between OS- and MS-renormalized PDFs generates a threshold correction
denoted by .# in Fig. 1.

"Here we will not consider the possibility of having an intrinsic charm contribution with m > AqQcp.-
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Figure 1: Tllustration of a VENS scheme for arbitrary masses in the classical OPE region x ~ &'(1). The
green arrows indicate the RG running of the PDFs and o, with the corresponding appropriate number of
active flavors.

2. DIS in the endpoint region x — 1

As an instructive showcase for a VENS with inclusive final state jets we consider DIS in the
endpoint region x — 1. Here the factorization theorem in Eq. (1.1) is not any more appropriate
due to the appearance of large logarithms ~ In(1 —x) in the hard matching coefficients H;;. These
are related to the collinear dynamics within the final state jet with a typical invariant mass of order
Q%(1 —x) < Q?, which is a perturbative scale for 1 —x > Aqcp,/Q. The factorization theorem for
massless quarks reads in this regime up to higher orders in 1 —x [6, 7, 8, 9]

R~ ¥ e Hos(Qa) [ d€sons (076 ~x),10) (&), eAY

i=q,q

Here the local hard function Hpys(Q, i) is related to the matching coefficient between the full QCD
and the low-energy current, and the jet function Jps(s ~ Q*(1 —x),u)) describes the production
rate of an inclusive jet with invariant mass s. The corresponding evolution factors to the common
renormalization scale p are implied. We note that no flavor-mixing terms arise in the low energy
contributions to Hpys, in Jprs and the evolution factors which leads to the fact that the parton gen-
erated out of the PDF is the one entering the hard interaction and the final state jet. The underlying
reason is that the splitting of an initial collinear gluon into a collinear quark carrying the large
amount of the longitudinal momentum fraction and a soft quark with momentum ~ Q(1 —x) is
power suppressed by &'(1 —x). This feature is carried on in the presence of massive quarks, which
has the consequence that the production of primary massive quarks is suppressed and massive quark
effects enter mainly via secondary corrections starting at &'(a?), see Fig. 2.2

Our goals for a VENS in the endpoint region x — 1 remain the same as in the classical region
x ~ O(1) for the approach of ACOT, i.e. (i) the resummation of all large logarithms, (ii) the
correct limiting behavior of the perturbative structures, i.e. Hpis and Jpis, and (iii) a continuous
description for arbitrary hierarchies w.r. to the mass. As in the classical OPE region the use of
proper renormalization conditions is crucial [1, 10, 11]. The different possible hierarchies between

2In the full QCD contributions to Hpyg there are in fact flavor non-diagonal terms starting at &(c]) for the electro-
magnetic vector current. Conceptually, the treatment of these terms is straightforward.
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Figure 2: Examples for secondary massive quark radiation in DIS.
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Figure 3: Illustration of the VFNS for x — 1. The green arrows indicate the RG running of the hard and jet
function with the corresponding appropriate number of active flavors in the top-down evolution.

the mass scale and the kinematic scales are displayed in Fig. 3 using top-down RGE to the PDF
scale ty. Note that for different values of Q and x the hierarchies can fall in the scenarios I, II or
III. We discuss the corresponding factorization theorems schematically:

I) m 2 Q: We use OS renormalization (concerning the massive quark flavor) for the current,
the jet function, the PDFs and «; indicated by the superscript (n;) in the following implying
an evolution with the n; massless flavors. The factorization theorem reads

Fio~ Y e HGH(0,m,pun) UG (i, o) T (1) 0 U™ () @ £ () 22)
i=q,q

)

The only dependence on the massive quark is located in the hard function HS}’S. It contains
just full QCD contributions, since the low-energy contributions vanish in the OS scheme.
The massive quark decouples for m > Q. For m — 0 the factorization theorem contains
mass-singularities, which is, however, not the appropriate limit to be taken in this regime.

1) Q> m > Qv1—x: We use MS renormalization for the current and @ above the massive
threshold scale p,, indicated by the superscript (n; + 1) implying an evolution with n; + 1
flavors. The factorization theorem reads

Fia~ Y @ HG™ (0m,um) U™ (s, ) (0, ) US" (o, 15)

i=4,q9
XI5 (1) @ UL (g, 1) @ 172 () 2.3)
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Figure 4: Two different setups for RG running with < u,, (a) and pt > i, (b).

The hard function HS;’SH) contains additional mass-singular (but finite) subtractions com-
pared to H]()';IS) in Eq. (2.2), in particular also due to the now non-vanishing low-energy
(SCET) current diagrams. These render H]()"I’SH) IR finite and yield the correct massless
limit for m < Q. Below u,, we switch to OS renormalization, which results in a massive
threshold correction .# (i, ), and the evolution is performed with n; flavors.

III) Q+/1—x > m: We use MS renormalization for the current, the jet function and c above U,),.
The factorization theorem reads

Fl.,z ~ Z ele]()r;ls_H)(va’ .uH) UIEIHI—H) (.uHa.um) %H(Q’mnum) UIE]nl) (:u'mnu'f)
i=q,q

< I O ag) @ UL (1, ) o () @ U (1, 1) © £33 (1) 2.4)

The hard function, its evolution and its massive threshold correction remain unchanged com-
pared to Eq. (2.3). Now we additionally get massive quark contributions to the jet func-
tion Jg}’sﬂ)(m, us). These enter both via virtual contributions as well as via real radiation
corrections for s > 4m? (see also [11]). Together they yield the known massless limit for
Jgi’sﬂ) (m, uy) for m < Qv/1—x. Below u,, we switch to OS renormalization, which results
in a massive threshold correction . (m, W), and the evolution is performed just with n;

flavors.

Note that the massive threshold corrections .#y and .#; appearing in the factorization theo-
rems in Egs. (2.3) and (2.4) are directly related to the hard and the jet functions. They compensate
exactly for the difference in the employed renormalization schemes and render the transitions be-
tween the factorization theorems in Egs. (2.2), (2.3) and (2.4) continuous.

So far we have employed a RG setup where the hard and jet function are evolved to the generic
scale of the PDF. The physical cross section is, however, independent of the final renormalization
scale pt. In particular we can set 1 below or above the mass threshold scale ,, as displayed in Fig. 4
for Qv/1 —x > m. In the latter case the PDF is first evolved up with n; flavors, crosses the mass
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matching scale resulting in a threshold correction .# corresponding to the change of the employed
scheme, and continues its evolution with n; + 1 flavors. This is in analogy to the situation in the
OPE region in Fig. 1, where here .# contains just the leading order contributions for x — 1. The
equivalence to the factorization theorem in Eq. (2.4) implies on the one hand a relation between the
evolution factors, which can be already obtained in the massless case, but on the other hand also a
relation between the massive threshold corrections, namely

///H(m,u) X%j(m,,u) :.//f(m,,u), (25)

which can be verified explicitly. This relation shows that the virtual contributions within the struc-
tures of the factorization theorem, i.e. the hard and jet function and the PDF, are tied together via
consistency of RG running. Using a recent result for the nonsinglet heavy flavor PDF matching
in Ref. [12] one can determine the universal threshold corrections up to &(@?) in the logarithmic
counting ¢ In(1 —x) ~ 1.

3. Event shapes in the dijet region

We finish with a brief discussion of event shapes in e e~ collisions, in particular we concen-

trate on thrust which we define by

T=1-T =

Y;|Ej| 0

Here 7 is the thrust axis, and the sum is performed over all final state particles with momenta p;
and energies E;. In the dijet limit corresponding to T — 0 the factorization theorem for massless
quarks reads to leading order [13, 14]

do 5

T~ HQp) [AI(Q QL) S (L) (32)
The hard function H;(Q, i) corresponding to the difference between the full QCD and the low-
energy current and the jet function J(s ~ max{Q?7,QAqcp }, it) describing the collinear dynam-
ics of the two outgoing jets are analogous to DIS with corresponding replacements, i.e. H; =
Hpis(Q* — —Q?) and J; = Jpis ® Jpis. The main difference concerns the soft physics, where
St(¢ ~max{Q7,Aqcp }, 1) describes now soft final state radiation between the outgoing jets which
can happen at a perturbative scale in the tail region Aqcp/Q < 7 < 1. The differential cross section
is large in the dijet regime, which makes it phenomenologically important.

Compared to DIS a VENS for 7 — 0 can be set up in an analogous way due to the similar
structure of the factorization theorem. The main difference is that an addional hierarchy can arise,
namely that the mass scale is below the soft scale us ~ Q7 in the tail region. In this situation we
can use MS renormalization for all structures in the factorization theorem and the RG evolution
does not cross the mass scale, so that no threshold corrections arise. The soft function acquires
massive contributions calculated in [15], which converge to the correct massless limit for m < Q.
A detailed discussion including a numerical analysis can be found in [11].
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