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1. Introduction

It is known that hadronic collisions with accompanying production of jets in the forward ra-
pidity regions are potentially ideal tools for looking for so-called small x effects. By these we
simply mean a necessity of a systematic resummation of αs log(1/x) perturbative terms, where x is
a fraction of the initial state hadron momentum carried by the parton participating in the "hard col-
lision" and is numerically small. The simplest form of such resummation leads to Balitsky-Fadin-
Kuraev-Lipatov (BFKL) evolution equation [1 – 3], but there are various improvements aiming
either to resolve certain drawbacks of the BFKL approach, or to match BFKL with the well-tested
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equation which works for larger x.
The former group includes the Balitsky-Kovchegov (BK) equation [4, 5] (or its improved version
incorporating running strong coupling, rcBK [6, 7]) which accounts for the gluon saturation phe-
nomenon [8]. For the latter group we can include Ciafaloni-Catani-Fiorani-Marchesini (CCFM)
equation [9 – 11]. There is also a more general approach extending the CCFM to a nonlinear equa-
tion [12], or slightly less complicated equation supplementing the momentum space BK equation
with certain DGLAP terms and so-called kinematic constraint [13, 14]. The latter equation was
used in [15] to obtain an unintegrated gluon density (UGD), which in what follows will be called
KS UGD. Primarily due to the kinematic constraint it has a capability to deal with large pT jets,
remaining in the same time a small-x approach.

A theoretic construct that makes a practical use of UGDs is so-called kT or high energy factor-
ization (HEF), which convolutes transverse momentum dependent UGDs with hard sub-processes
defined with initial states being off-shell. The HEF notion is quite general and actually may cor-
respond to various factorization formulae; for instance for inclusive dijet production [8] or for
heavy quark pair production [16, 17]. These approaches are not all-orders QCD theorems, and for
hadron-hadron collisions they are expected to be violated (see e.g. [18 – 22]). Nevertheless, they
are proven to be very useful in an actual phenomenology, with the restriction that UGDs might not
be universal. For the forward jet processes the following HEF factorization formula can be used

dσAB→X =
∫ d2kTA

π

∫ dxA

xA

∫
dxB ∑

b
Fg∗/A (xA,kTA,µ) fb/B (xB,µ) dσ̂g∗b→X (xA,xB,kTA) , (1.1)

where Fg∗/A is the UGD, fb/B are the collinear parton distribution functions and b runs over gluon
and all the quarks that can contribute to the production of multiparticle state X (see also [23]).
The off-shell gauge invariant matrix elements for multiple final states (residing in dσ̂g∗b→X ) will be
discussed in Sec. 2. It is implicitly assumed that xB� xA in order to populate the forward rapidity
region. Often, the UGDs do not depend on the hard scale µ , however this dependence is important
for certain observables.

2. Off-shell gauge invariant amplitudes

When the final states X in (1.1) involve gluons, the off-shell tree-level amplitude calculated
from the standard Feynman diagrams is in general not gauge invariant. There are a few methods
to overcome this: the Lipatov’s effective action and the resulting Feynman rules [24], the methods
suitable for automatic numeric calculation [25 – 27] and the method of [28] using matrix elements
of Wilson lines. Below we shall briefly describe the last method.
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The basic idea is to find the gauge invariant amplitude M̃e1...en (k1, . . . ,kn;X) for the process
g∗ (k1,e1) . . .g∗ (kn,en)→ X which becomes the standard QCD amplitude Me1...en (k1, . . . ,kn;X) if
the gluons are taken on-shell. Here, ki and ei are momenta and "polarization" vectors of off-shell
gluons (mutually transverse in the Feynman gauge). The amplitude M̃ can be found as [28]

〈0|Rc1
e1
(k1) . . .R

cn
en
(kn) |X〉= δ (k1 · e1) . . .δ (kn · en)

δ
4 (k1 + . . .+ kn−X)M̃e1...en (k1, . . . ,kn;X)+disconnected diagrams, (2.1)

where the Wilson line operators (one for each off-shell gluon) are defined as

Rci
ei
(ki) =

∫
d4yeiy·ki Tr

{
1

πg
tci P exp

[
ig
∫

∞

−∞

ds
dziµ (s)

ds
Aµ

b (z) tb
]}

, (2.2)

with ta being the color generators. In order to keep the integrals over ds finite and derive formally
the generalized functions appearing in (2.1) the path zi(s) in (2.2) is parametrized as

zµ

i (s) = yµ +
2
ε

tanh
(

εs
2

)
eµ

i , s ∈ (−∞,∞) . (2.3)

The path becomes infinite and straight in the ε → 0 limit leading to the transverse delta functions
δ (ei · ki) and the eikonal propagators of the form i/(ei · p+ i0+).

The tree-level matrix elements (2.1) can be calculated automatically using OGIME program
[29]. The results coincide with the method of [27] suitable for fast numeric computations. More-
over, for a certain choice of "polarization" vectors ei we recover the Lipatov’s vertices for reggeons
scatterings.

3. Numerical results for forward jets in p-p and p-Pb collisions

3.1 Forward-forward dijets

In order to access the saturation regime we propose to look at dijet events, where two recon-
structed jets lie in the forward rapidity region 3.2 < |yi| < 4.9, i = 1,2 [30]. The results were
obtained using three independent Monte Carlo programs: forward [31], a program implementing
the method of [26] and LxJet [32]. The potential collinear singularities were killed by choosing
anti-kT algorithm with R = 0.5 (identical here to a proper cut on the φ−η plane). In order to
analyse the sensitivity of our results to the particular model for UGD we have used KS and rcBK
evolution equations. We present the results in Fig. 1 We see a strong suppression of the nuclear
modification factors (i.e. the ratios of p-p to p-Pb cross sections) indicating the saturation effects.
In particular, the pT spectrum of the soft jet is especially sensitive: it is suppressed over the whole
kinematic region.

3.2 Forward-central dijets and trijets as a tool to access large gluon off-shellness

The saturation phenomenon is related to rather low kT region of the UGD. It is, however,
also very interesting to look at larger kT , i.e. at the larger gluon off-shellnes. An examplary
observable is three jet production, where the softest jet is in the forward region 3.2 < y3 < 4.7,
while the remaining two jets are in the central region |y1,2| < 2.8 and balance each other within
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Figure 1: The results for nuclear modification ratios for forward-forward dijet production within HEF frame-
work using KS and rcBK UGDs. The uncertainty bands come from the scale choice uncertainty. The pa-
rameters d and c influence the strength of the nonlinear term in the evolution equation for the lead. We refer
to [30] for further details.
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Figure 2: Azimuthal decorrelations for forward-central three jet production. The two hardest jets are in the
central detector, while the softest jet is in the forward region. For the left plot an additional cut is applied on
the central jets, namely we require that they should almost balance each other. This flattens the distribution
(left) comparing to the case without this cut (right). For more details refer to [33].

a certain cut, |~pT 1 +~pT 2| < Dcut [33]. Then, the forward jet accesses almost directly the large kT

distribution (here kT > 35GeV) of small-x UGD. The azimuthal decorrelations in that configuration
are presented in Fig. 2.

In the future it could be possible to access even smaller x by using a possible upgrade of the
CMS CASTOR detector to be able to reconstruct the jets. Then, for instance, one could consider
forward dijets when the softest jet is in the CASTOR while the harder (but still forward) in HF. The
cross section calculations are presented in Fig. 3.

In the end, let us comment, that for larger kT certain observables, in particular the azimuthal
decorrelations, are sensitive to an additional kind of resummation of the Sudakov type. This is
directly linked to the hard scale dependence of the UGD. Such a study has been done recently
in [34], where the calculation for decorrelations of forward-central dijets were calculated in HEF
supplemented in this kind of resummation and compared with the recent CMS data [35]. We refer
to the talk of K. Kutak for more details.
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Figure 3: The result for dijets when the softest jet is in a possible extension of the CMS CASTOR detector,
while the hard jet is around CMS HF detector.
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