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1. Introduction

A strongly coupled quantum field theory like quantum chromodynamics is thie flame-
work which is used in the interpretation of hadronic observables datatfremigh-energy physics
experiments. Despite its mature status many open questions remain, and thedrétital de-
scription is far from complete, as neither perturbative methods nor lattiggeegheaory can provide
a full description of hadronic phenomena. One of the open problemsrig)siance, gluon sat-
uration [2], which is expected on theoretical grounds. Another opebl@m is the derivation of
the dynamics of strongly coupled systems, such as quark-gluon plaseet|ydirom a QCD La-
grangian. In our approach to bridge weak and strong coupling dynatieast for some quantities
of intrest like gluon density we use an appropriately resummed nonlineat BEKation and ex-
tend it to the nonlinear regime. We solve the equation and calulate a saturatieiit generates.

2. The BFKL equation in diffusion approximation

The BFKL equation written for the unintegrated gluon density in the integrad feads

f(x,k?) = fo(x,K?) + ask?

1 dz/ dlz{ (x/212) ~ f(x/2K?)  f(x/zk?) (2.1)
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wherexis a longitudinal momentum fraction carried by the glulois, the modulus of its transversal
momentum. The LO BFKL equation can be solved by the Mellin transform. Thectsaisctic
function readsx (y) = 2¢/(1) — ¢(1—y) — @(y), wherey is a digamma function. The solution to
Eqg. (2.1) can be written as

o Wig(w,y)
k) = o /d (K2)Y /dwx p =t 2.2)

In order to evaluate the integral above one needs to know the chartdctention along the
imaginary axis in thg/ plane. Knowing that the characteristic function has a saddle point along the
y =1/2+iv contour, we can write the solution as

Cin(k2/k2)2
- In00/%)-1/2In0K /) g iig (2.3)

a 2\ _ o
Fxk)=70,1/2) VATTIN(x0/X)1/2A

where .7 (x0,1/2) = f(x0,1/2)/k? and x(1/2+iv) ~ A — 3A'v? with A = as4In2 andA’ =
as{ (3). From this explicit form, one may extract the coefflcients of the diffusiaragiqn

NF(Y,p) = SNGRF(Y.0) + 5A P (Y,p) + (A +A'/B)F(Y,p). (2.4)

where.7 (x,k?) = f(x,k?) /k? andY =In*¢ p = In "é
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Figure 1: Kinematical constraint effects and resummation effects. Upper right plot: Function Xeft (Y, )
along the real contour for as = 0.2,0.5,1,2. Upper left plot: Function xerf(y, w) along the imaginary
contour for ag=10.2,0.5,1, 2. Lower left plot: Function et (Y, w) along thereal contour for as= 2,10, 100,
Lower right plot: Function xef (Y, w) along the real contour for as = 2,10,100.

3. The BFKL equation with higher order corrections and the gluon density in the
whole range of coupling constant

The BFKL equation has been obtained at NLO accuracy in R§ffq] [6H@{vever, in order
to make the eigenvalue of the kernel stable, one needs to perform resunsratioorrections to
infinite order. One source of such corrections is provided by the lbedddanematical constraint
effects. It has been suggested in Rff. [3] that

1

= =V (@)Xke (v, ), (3.1)
S
where 1
VO (w) = —+A(w) (3.2)
is the LO DGLAP anomalous dimension and
1 1 1 11
A(w):—w+1+w+2—w+3—w(2+w)+Lﬂ(1)+1—2 (3.3)
while the kinematical constraind improvedfunction reads:
Xke. =20(1) —Y(1-y+w/2) - Y(y+ w/2) (3.4)

Equation [3]1) provides a resummation of DGLAP gluon anomalous dimensio@ &nissing

in BFKL) and kinematical effects. It can be written as an effective eigkemvequation in the
form w = Xet (Y, W), With Xett (Y, ) = asxkc. (¥, w) (1+Aw). The model introduced above has
beeen studied in the context of large strong coupling limit. The crucial hehavoviding energy
conservation, is the vanishing of the eigenvalue function wien 1 see Fiq]l. As a practical
application of the result obtained in Ref] [3], we ask a question aboutrtdpegies of the gluon
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Figure 2: Gluon density obtained for various values of the coupling constant as=0.2, 0.5, 1, 10, 10*. The
densities decrease for a smaller coupling constant. Left, x=107%; right, x = 10~%.

density while evaluated at the increasing values of strong coupling. IMadree can think that if
the coupling constant increases, the number of gluons vanishes ostat Is@onstant. Below, we
show that this is not the case, the gluon density grows, and we get infinitaely soé gluons. The
resulting gluon density obtained from strongly coupled BFKL for différaatues of the coupling
constant is shown on left panel of Fid. 2. The form of the eigenvaloetion at strong values of
coupling constant is:

. 1
Xetfo(w,1/24iv) = 1.02795— 2.04635% = A\g — éAgtvz, (3.5)

Formula [3J5) can be used to obtain analytically a solution of the BFKL equatitimeistrong
coupling regime and to deduce a partial differential equation which it obeys

1 1
A DY, p) = 5A4020(Y,p) + 5A40p (Y. p) + (A + 24 /B)B(Y, ), (3.6)

where the values are read off from formulaj3%)= 4.08, A¢ = 1.02

4. The BK equation in the limit of infinite coupling constant as

The linear BFKL evolution equation misses a very important aspect of thedmgtgy scat-
tering, namely, the saturation physics. As pointed out in the introductioaraeapproaches were
constructed in order to include non-linear effects, like multiple scatteringyarmh saturation, re-
sponsible for the unitarization of the scattering amplitudes. A particularlyilisefl simple enough
approach to unitarize the cross section locally at given impact parameteBslitsky-Kovchegov
(BK) equation, which reads:

_ o di2 [120(x,12) — RO K2) KD K2)] _ @
2\ - ) ) ) _ S
0|n1/x¢1(X,k )—as/o 2 |: “2—k2‘ + T asnRZ

We note that, if one neglects the non-linear term, one recovers the linedr B&tation. The
question arises how to extend the BK equation to strong coupling regimefehemee [[lL] such an

D?(x,k%). (4.1)
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Figure 3: Red (lower) line: Saturation scale obtained from the solution of te new equation. Blue (upper)
line: saturation scale as follows from the weak coupling equations and models: Q2(Y) ~ e®29Y

eqguation has been postulated based on numerical analysis and theargticaénts:

as

- ®(Y.p), (42

1 1
XY, p) = 5A4020(Y.p) + 5A40p (Y. p) + (A + 24 /B)B(Y, )

where the values are read off from formula]3.8}: = 4.08, A¢ = 1.02. The equation has similar
structure as the BK in diffusive approximation in the weak coupling lifnik [11je Eoefficient in
front of the non-linear term has to be consistent with the large strondinguimit we take in the
linear part. We take the limirs — o (a5 is essentially 't Hooft coupling) and assume a large target
approximation R? — ), the ratio% being fixed and we set it to unity. The solution of the above
equation is presented on the right panel of Flg. 2, and it shows thatret goint where the shape
of the curve flattens the number of gluons saturates. The behavior ofubie gumber density
®(Y,p) is to be contrasted with the full form of the BK in the weak coupling regime, etiee
rate of production of gluons slows down but still diverges logarithmically amly approximately
obeys the FKKP equation.

Now, we can calculate the saturation scale that follows from our equatibih @adsQZ(Y) ~
et%8Y. For evaluation of saturation scale we use we use the method propo§éjl. iV plot the
strong coupling saturation scale together with the weak coupling courttérgdg 3. The above
result suggests that, at equal transversal momentum, saturation effsirtsg coupling occur at
smaller values of InAx than at weak coupling. This can be easily understood, since the stronger
the coupling is, the closer gluons are packed, and therefore the quiedapr screening takes at
the initial values of evolution time . The result for saturation line is quite close torikebtained
in Refs. [1B,[1}] by very different holographic methods, therefaimting at the universality of
the saturation phenomenon at large values of the coupling constant.

5. Conclusions

An approach to obtain an evolution equation that the gluon density obeys tivbeoupling
constant is very large has been overviewed. The proposal is gedungberturbative QCD frame-
work that, through certain resummations, allows one to probe strong coypiysics. Solving this
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equation, we are able to extract the saturation scale, which agrees quedlitatith results from
holography.
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