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1. Introduction

A strongly coupled quantum field theory like quantum chromodynamics is the basic frame-
work which is used in the interpretation of hadronic observables data fromthe high-energy physics
experiments. Despite its mature status many open questions remain, and the full theoretical de-
scription is far from complete, as neither perturbative methods nor lattice gauge theory can provide
a full description of hadronic phenomena. One of the open problems is, for instance, gluon sat-
uration [2], which is expected on theoretical grounds. Another open problem is the derivation of
the dynamics of strongly coupled systems, such as quark-gluon plasma, directly from a QCD La-
grangian. In our approach to bridge weak and strong coupling dynamicsat least for some quantities
of intrest like gluon density we use an appropriately resummed nonlinear BFKL equation and ex-
tend it to the nonlinear regime. We solve the equation and calulate a saturation scale it generates.

2. The BFKL equation in diffusion approximation

The BFKL equation written for the unintegrated gluon density in the integral form reads

f (x,k2) = f0(x,k
2)+ ᾱsk

2
∫ 1

x/x0

dz
z

∫ ∞

0

dl2

l2

[

f (x/z, l2)− f (x/z,k2)

|l2− k2| +
f (x/z,k2)√

4l4+ k4

]

, (2.1)

wherex is a longitudinal momentum fraction carried by the gluon,k is the modulus of its transversal
momentum. The LO BFKL equation can be solved by the Mellin transform. The characterisctic
function reads:χ(γ) = 2ψ(1)−ψ(1− γ)−ψ(γ), whereψ is a digamma function. The solution to
Eq. (2.1) can be written as

f (x,k2) =
1

2πi

∫

dγ(k2)γ 1
2πi

∫

dωx−ω ω f 0(ω ,γ)
ω −αsχ(γ)

. (2.2)

In order to evaluate the integral above one needs to know the characteristic function along the
imaginary axis in theγ plane. Knowing that the characteristic function has a saddle point along the
γ = 1/2+ iν contour, we can write the solution as

F (x,k2) = F (x0,1/2)
1

√

4π ln(x0/x)1/2λ ′ e
λ ln(x0/x)−1/2ln(k2/k2

0)e
− ln(k2/k2

0)
2

41/2λ ′ ln(x0/x) , (2.3)

whereF (x0,1/2) = f (x0,1/2)/k2 and χ(1/2+ iν) ≈ λ − 1
2λ ′ν2 with λ = ᾱs4ln2 andλ ′ =

ᾱsζ (3). From this explicit form, one may extract the coefficients of the diffusion equation

∂Y F (Y,ρ) =
1
2

λ ′∂ 2
ρ F (Y,ρ)+

1
2

λ ′∂ρF (Y,ρ)+(λ +λ ′/8)F (Y,ρ). (2.4)

whereF (x,k2)≡ f (x,k2)/k2 andY = ln x0
x ρ = ln k2

k2
0
.
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Figure 1: Kinematical constraint effects and resummation effects. Upper right plot: Function χe f f (γ ,ω)

along the real contour for ᾱs = 0.2,0.5,1,2. Upper left plot: Function χe f f (γ ,ω) along the imaginary
contour for ᾱs = 0.2,0.5,1,2. Lower left plot: Function χe f f (γ ,ω) along the real contour for ᾱs = 2,10,100.
Lower right plot: Function χe f f (γ ,ω) along the real contour for ᾱs = 2,10,100.

3. The BFKL equation with higher order corrections and the gluon density in the
whole range of coupling constant

The BFKL equation has been obtained at NLO accuracy in Refs. [6, 7].However, in order
to make the eigenvalue of the kernel stable, one needs to perform resummations of corrections to
infinite order. One source of such corrections is provided by the so-called kinematical constraint
effects. It has been suggested in Ref. [3] that

1
ᾱs

= γ(0)(ω)χk.c.(γ ,ω), (3.1)

where
γ(0)(ω) =

1
ω

+A(ω) (3.2)

is the LO DGLAP anomalous dimension and

A(ω) =− 1
ω +1

+
1

ω +2
− 1

ω +3
−ψ(2+ω)+ψ(1)+

11
12

(3.3)

while the kinematical constraind improvedχ function reads:

χk.c. = 2ψ(1)−ψ(1− γ +ω/2)−ψ(γ +ω/2) (3.4)

Equation (3.1) provides a resummation of DGLAP gluon anomalous dimension atLO (missing
in BFKL) and kinematical effects. It can be written as an effective eigenvalue equation in the
form ω = χe f f (γ ,ω), with χe f f (γ ,ω) = ᾱsχk.c.(γ ,ω)(1+Aω) . The model introduced above has
beeen studied in the context of large strong coupling limit. The crucial behavior, providing energy
conservation, is the vanishing of the eigenvalue function whenω → 1 see Fig 1. As a practical
application of the result obtained in Ref. [3], we ask a question about the properties of the gluon
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Figure 2: Gluon density obtained for various values of the coupling constant ᾱs =0.2, 0.5, 1, 10, 104. The
densities decrease for a smaller coupling constant. Left, x = 10−6; right, x = 10−4.

density while evaluated at the increasing values of strong coupling. Naively, one can think that if
the coupling constant increases, the number of gluons vanishes or at least it is constant. Below, we
show that this is not the case, the gluon density grows, and we get infinitely many soft gluons. The
resulting gluon density obtained from strongly coupled BFKL for different values of the coupling
constant is shown on left panel of Fig. 2. The form of the eigenvalue function at strong values of
coupling constant is:

χe f f ∞(ω ,1/2+ iν) = 1.02795−2.04635ν2 ≡ λst −
1
2

λ ′
stν2, (3.5)

Formula (3.5) can be used to obtain analytically a solution of the BFKL equation inthe strong
coupling regime and to deduce a partial differential equation which it obeys:

∂Y Φ(Y,ρ) =
1
2

λ ′
st∂ 2

ρ Φ(Y,ρ)+
1
2

λ ′
st∂ρΦ(Y,ρ)+(λst +λ ′

st/8)Φ(Y,ρ), (3.6)

where the values are read off from formula (3.5)λ ′
st = 4.08, λst = 1.02

4. The BK equation in the limit of infinite coupling constant ᾱs

The linear BFKL evolution equation misses a very important aspect of the high-energy scat-
tering, namely, the saturation physics. As pointed out in the introduction, several approaches were
constructed in order to include non-linear effects, like multiple scattering andgluon saturation, re-
sponsible for the unitarization of the scattering amplitudes. A particularly useful and simple enough
approach to unitarize the cross section locally at given impact parameter is the Balitsky-Kovchegov
(BK) equation, which reads:

∂ln1/xΦ1(x,k
2) = ᾱs

∫ ∞

0

dl2

l2

[

l2Φ(x, l2)− k2Φ(x,k2)

|l2− k2| +
k2Φ(x,k2)√

4l4+ k4

]

− ᾱs
αs

πR2 Φ2(x,k2). (4.1)

We note that, if one neglects the non-linear term, one recovers the linear BFKL equation. The
question arises how to extend the BK equation to strong coupling regime. In reference [1] such an
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Figure 3: Red (lower) line: Saturation scale obtained from the solution of te new equation. Blue (upper)
line: saturation scale as follows from the weak coupling equations and models: Q2

s (Y )≃ e0.29Y

.

equation has been postulated based on numerical analysis and theoreticalarguments:

∂Y Φ(Y,ρ) =
1
2

λ ′
st∂ 2

ρ Φ(Y,ρ)+
1
2

λ ′
st∂ρΦ(Y,ρ)+(λst +λ ′

st/8)Φ(Y,ρ)− ᾱs

πR2 Φ2(Y,ρ), (4.2)

where the values are read off from formula (3.5):λ ′
st = 4.08, λst = 1.02. The equation has similar

structure as the BK in diffusive approximation in the weak coupling limit [11]. The coefficient in
front of the non-linear term has to be consistent with the large strong coupling limit we take in the
linear part. We take the limit̄αs → ∞ (ᾱs is essentially ’t Hooft coupling) and assume a large target
approximation (R2 → ∞), the ratio ᾱs

R2 being fixed and we set it to unity. The solution of the above
equation is presented on the right panel of Fig. 2, and it shows that at some point where the shape
of the curve flattens the number of gluons saturates. The behavior of the gluon number density
Φ(Y,ρ) is to be contrasted with the full form of the BK in the weak coupling regime, where the
rate of production of gluons slows down but still diverges logarithmically and only approximately
obeys the FKKP equation.

Now, we can calculate the saturation scale that follows from our equation and it readsQ2
s (Y )≃

e1.06Y . For evaluation of saturation scale we use we use the method proposed in [12]. We plot the
strong coupling saturation scale together with the weak coupling counterpart in Fig 3. The above
result suggests that, at equal transversal momentum, saturation effects at strong coupling occur at
smaller values of ln1/x than at weak coupling. This can be easily understood, since the stronger
the coupling is, the closer gluons are packed, and therefore the overlapping or screening takes at
the initial values of evolution time . The result for saturation line is quite close to theone obtained
in Refs. [13, 14] by very different holographic methods, therefore pointing at the universality of
the saturation phenomenon at large values of the coupling constant.

5. Conclusions

An approach to obtain an evolution equation that the gluon density obeys when the coupling
constant is very large has been overviewed. The proposal is grounded in perturbative QCD frame-
work that, through certain resummations, allows one to probe strong couplingphysics. Solving this
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equation, we are able to extract the saturation scale, which agrees qualitatively with results from
holography.
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