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We show that the longitudinal helicity amplitude of the hard vector meson leptoproduction within

the so-called modified perturbative approach (MPA) in a kinematic where the incoming and out-

going partons are kept on their mass-shells, leads to results that can be connected with the am-

plitude obtained within kT−factorization. This correspondence sheds light on the differences in

the way of treating the nucleon interactions with the hard-subprocess partons within these two

schemes. We compare predictions from both factorization schemes with H1 data and discuss the

role of the quark contribution which is neglected within the kT−factorization scheme. We also

briefly discuss the parton phase space where saturation effects could play an important role within

the collinear factorization scheme. Finally we give an estimate of the vector meson width aV for

the case of the ρ meson, in order to show the role of the Sudakov form factor and the vector

meson ansatz on the predictions.
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1. Introduction

The hard exclusive vector meson leptoproduction in the small−x regime,

γ∗(q,λγ)N(p)→V (pV ,λV )N ′(p′) ,

where λγ and λV denote respectively the polarizations of the virtual photon and the vector meson,

can be described within different theoretical schemes inspired by the perturbative QCD calculations

: the collinear factorization approach and the kT−factorization approach. These two schemes are

based on different kinematical assumptions. The collinear factorization is valid in the Bjorken limit

when the virtuality of the photon Q and the energy in the center of mass of the system γ∗ N denoted

W , are assumed to be asymptotically large (−q2 = Q2,W ) → ∞, but when the Bjorken variable

x ≈ Q2/W 2 is finite. A proof of factorization was given long time ago in ref. [1] for the leading

twist amplitude where both the virtual photon and the vector meson are longitudinally polarized.

The kT−factorization approach [2], as well as the dipole model [3], is based on the eikonal limit

when W 2 ≫Q2 ≫ Λ2
QCD. In this study, we compare the results derived within kT−factorization and

collinear factorization schemes for the leading helicity amplitude. We then discuss the numerical

results and the contribution of the quark exchange in t−channel.

2. kT−factorization aproach

Within the kT−factorization framework, the helicity amplitudes MV,{λρ ,λγ} of the diffractive

vector meson leptoproduction are factorized using the eikonal approximation and reads as the con-

volution of the γ∗(q,λγ )→ V (λV ) impact factor, denoted Φ
γ∗λγ

→VλV (k) and the unintegrated gluon

density F (x,k)1,

MV,{λρ ,λγ} = is

∫

d2k

(k2)2
Φ

γ∗λγ
→ρλρ (k)F (x,k) . (2.1)

The impact factor is defined as

Φ
γ∗λγ

→ρλρ =
1

2s

∫

dκ

2π
iM (γ∗(λγ ,q)+g(k1)→ ρ(λρ , p1)+g(k2)) ,

with κ = (q+ k1)
2. For large enough values of Q (Q2 ≫ Λ2

QCD), it is possible to calculate the

impact factor Φγ∗→V within the light-cone collinear factorization scheme. The result obtained for

the helicity amplitude MV,{0 ,0} in ref. [4], reads

I mMV,{0 ,0} =
∫

dτ
∫

d2r∑
f

C
f

V

1

2

√

π

Nc

fV ϕ1(τ ,µ
2) ∑

h,h̄

δh,−h̄Ψ
γ∗, f
h,h̄

(τ ,r)

×I mN
qq̄(x,r) (2.2)

where Ψ
γ∗, f
h,h̄

(τ ,r) is the virtual photon wavefunction and where N qq̄(x,r) is the dipole/target scat-

tering amplitude. The vector meson leading twist distribution amplitude (DA) is denoted ϕ1(τ ,µ
2)

1We denote k the euclidean transverse vector such that k2 =−k2
⊥.
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p p′
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γ∗λγ

→VλV (k)

F (x,k)

Figure 1: Impact factor representation of the helicity amplitudes.

with µ2 ∼ Q2 the renormalization scale. In the forward limit, the dipole scattering amplitude is

related by the optical theorem to the dipole cross-section,

I mN
qq̄(x,r) = s σ̂(x,r) . (2.3)

For our purpose, we will use the saturation model of Golec-Biernat and Wüsthoff (GBW) [5] to

model the dipole cross-section. In this model, saturation effects become important for |r|> 2R0(x)

with R0(x) the saturation radius. Note that the skewness effects are neglected in this treatment but

some of the dipole models [6] takes them into account.

3. Collinear factorization approach and modified perturbative approach

In this study, we use the modified perturbative approach (MPA) in order to evaluate the am-

plitude MV,{0 ,0}. The approach we follow is very similar in spirit to the model of Goloskokov and

Kroll (GK) [7]. The main difference is that we keep the external hard subprocess partons on their

mass-shells. In this kinematic, the virtual photon wavefunction factorizes in the result and then

it allows to identify the dipole scattering amplitude in terms of generalized parton distributions

(GPDs).

q = q′+∆

pV ∼ q′

p p′
k1 = k̄− ∆

2 k2 = k̄+ ∆
2

ℓ1

ℓ2

Hard subprocess V

Figure 2: Diagram with the parton kinematic.

Within MPA, as illustrated in fig. 2, the amplitude reads like the convolution of the hard sub-

process, the vector meson wavefunction ΨV (τ , ℓ) and the GPDs of the partons exchanged in the
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t−channel with the nucleon. The skewness is denoted ξ and ξ ∼ x/2 in the small−x regime. The

result within the MPA for the amplitude MV,{0 ,0} in terms of the gluon GPD Hg(x,ξ , t) and the

quark GPDs H f (x,ξ , t) reads [8],

MV,{0 ,0} =
∫ 1

0
dτ

∫

d2r ∑
f

C
f

V Ψ̂V (τ ,−r) ∑
hh̄

δh,−h̄Ψ̂
γ∗, f

h,h̄
(τ ,r)exp

(

−S(τ ,r,Q2)
)

×
(

αs

√
2π

Nc

1

ττ̄

∫ 1

0
dx

Hg(x,ξ , t)+CF x
(

H f (x,ξ , t)−H f (−x,ξ , t)
)

(x−ξ + iε)(x+ξ − iε)

)

, (3.1)

where τ̄ = 1− τ , C
f

V is the vector meson wavefunction coefficient for the quark of flavor f and

Ψ̂V (τ ,r) = π

√

2

Nc

fV ϕ1(τ ,µ
2)exp(−ττ̄

r2

4a2
V

) . (3.2)

The factor "exp
(

−S(τ ,r,Q2)
)

" is the Sudakov form factor that is known up to next to leading log

accuracy [9] and which resums the emission of soft gluons from the quark antiquark pair. Note that

the leading twist result can be straightforwardly obtained from eq. (3.1) by replacing Ψ̂V (τ ,−r) by

Ψ̂V (τ ,0) and taking the limit S(τ ,r,Q2)→ 0. We can then identify the imaginary part of the gluon

contribution of the leading twist result with the kT−factorization result eq. (2.2) and get that

I mN
qq̄(x,r)↔−s

π2αs

Nc

r2
0 Hg(ξ ,ξ , t ∼ 0) (3.3)

with r2
0 = 4/(ττ̄Q2). Note that in the leading log approximation, the gluon GPD can be related to

the gluon PDF: Hg(ξ ,ξ , t ∼ 0) ∼ xg(x). Then, up to a relative sign, the result of eq. (3.3) in the

forward case is similar to the result of ref. [10] for small dipole sizes r = |r| derived in the forward

case ξ = 0,

σ̂(x,r) =
π2αs

Nc

r2 xg(x) , (3.4)

where r2 is replaced by r2
0. Saturation effects are expected to be important for |r| > 2R0(x) and

consequently, one can define the intervals [0,τ0(x,Q
2)] for τ or τ̄ , with τ0(x,Q

2)∼ (R2
0(x)Q

2)−1 in

the limit Q ≫ R−1
0 (x), where r2

0 > 4R2
0(x) and in which one should implement such effects. These

intervals correspond to aligned jet configurations when τ or τ̄ → 0, which are suppressed by the

overlap of the wavefunctions and by the Sudakov form factor within MPA. Note also that the sign

difference between the results (3.1) and (2.2) is to take with precaution as it is clear from eq. (2.3)

that I mN qq̄(x,r)> 0 in the forward case.

4. Comparison of the results

In fig. 4, we compare the leading twist result and the result obtained within kT−factorization

using the GBW saturation model, with the data of the H1 collaboration for the longitudinally po-

larized ρ−meson cross-section. We show also the leading twist results obtained in the collinear

factorization scheme, using the GPD model of GK [7] and the asymptotic shape of the DA. We put

in αs the renormalization scale µ2 = Q2 +m2
V with mV the mass of the vector meson. The GPD

model is based on the double distribution ansatz [11] and the GPD evolution in Q2 is approximated
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Figure 3: Imaginary part of the t−channel gluon exchange contribution I mM
g

V,{0 ,0} versus Q2 vs the data

of H1 [12] for W = 75 GeV. Leading twist result (blue dashed) and kT−factorization result (red) using the

GBW saturation model for the dipole scattering amplitude.

by the DGLAP evolution of the PDFs. The forward limit of the double distribution of the GPDs

Hi(x,ξ , t) is fitted on the CTEQ6M PDF set.

With the GK model for GPDs, the cross-section increases by about 60% in the kinematic

shown in fig. 4 when one takes into account all the contributions, i.e. real and imaginary parts of

the quark and the gluon contributions. Hence, the quark contributions are not negligeable even

for the small−x values we have considered. It is mostly due to the interference terms between

the quark and the gluon contributions. Note that the leading twist result is above the data. It can

be decreased by fitting the vector meson wavefunction width aV within MPA (see fig. 4). The

effect of the Sudakov form factor decreases the values of the cross-section for small values of Q2

(Q2 . 10 GeV2) .
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Figure 4: Longitudinally polarized ρ−meson cross-section versus Q2 for W = 75 GeV. Left : total leading

twist contribution (blue dashed) and imaginary part of the gluon contribution (red plain). Right : predictions

with aV = 0.5 GeV−1 and taking into account the Sudakov form factor. The gray area corresponds to the

uncertainty on the renormalization scale by changing µ2 = Q2 +m2
V in 4µ2 and µ2/4. The predictions are

compared with the H1 collaboration data [12].

5. Conclusion

In this study, we proposed a modification of the kinematics to calculate the hard sub-process

associated to the leading helicity ampltiude MV,{0 ,0}. Keeping the partons on the mass-shell allows
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to compare results from the kT−factorization approach with the MPA results. As a matter of

fact, we find that the imaginary part of the dipole scattering amplitude which is positive in dipole

models, corresponds to a negative quantity in MPA which is expressed in terms of the gluon GPD

H(ξ ,ξ , t). Up to this relative sign, we recognize in the forward limit the well known formula of

color transparency for the small dipole size if we interpret r2
0 = 4/(ττ̄Q2) as the relevant dipole

size. The dipole size r0 reaches the saturation region (r0 > 2R0(x)) for aligned jet configurations

when τ → 0 or 1. The numerical results shows that the imaginary part of the gluon contributions

are similar for both approaches but taking into account the real parts and the quark contributions,

the result at leading twist overestimates the longitudinal cross-section. The wavefunction ansatz as

well as the inclusion of the Sudakov form factor allows to decrease enough the results to fit data

for meson width aV ∼ 0.5 GeV−1 but it is not clear if the discrepancy with data is due to the lack

of saturation effects within MPA or the lack of knowledge of the vector meson wavefunction.
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