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1. Introduction

One of the most important issues in QCD phenomenology at the Large HadronCollider (LHC)
is estimating the relevance of small-x physics related effects on a number of physical observables
and getting a definite answer on the validity and the applicability of the high energy resummation
programme.

In the phase space region where the momentum exchanged is much smaller thanthe total
center-of-mass energy,|t|≪ sor equivalently at very small-x, logarithms in energy (logs∼ log1/x)
can spoil the convergence in the perturbative series of scattering amplitudes. More specificaly,
terms of the form(αS log1/x)n ∼ 1, whereαS is the strong coupling, for small enoughx, need to
be resummed to all orders.

The Balitsky-Fadin-Kuraev-Lipatov (BFKL) framework allows the resummation of center-
of-mass energy logarithms at leading [2, 3, 4] (Lx) and next-to-leading [5, 6] accuracy (NLx).
At Lx, all the terms of the form(αS log1/x)n need to be resummed whereas, at NLx one has
also to resum terms in which the strong coupling lacks one power compared to the logarithm in
energy, that is, terms that behave likeαS(αS log1/x)n. The necessary ingredients for the study
of scattering amplitudes within the BFKL formalism, are the gluon Green’s function which is
obtained by solving the BFKL equation, the gluon Regge trajectory and the impact factors, the latter
being process-dependent objects. In a very general definition, the impact factors are the effective
couplings of the scattering particles to whatever is exchanged in thet-channel for a process studied
in the high energy factorization scheme. Resumming small-x logarithms is finally well understood
for a wide range of processes and observables at HERA and the LHC:perturbative evolution of
parton distribution functions, photoproduction [7, 8, 9] and double-DIS[10, 11, 12] processes,
Mueller-Navelet jets and forward jets in DIS.

The impact factors for gluons and massless quarks were calculated in Ref. [13] at NLx ac-
curacy and in momentum space. This allows in principle for the calculation of various DIS and
double-DIS processes with massless quarks and gluons in the initial state whereas the extension to
the case of hadron-hadron collisions was also established.

2. NLx correction in an integral form

The leading order quark impact factor is described by a simple formula

h(0)(k) =
√

π
N2

c −1
2CFαSNε

k2 µ2ε
, Nε =

(4π)ε/2

Γ(1− ε)
. (2.1)

The NLx impact factor can be written as a sum of the leading order impact factor and NLx
correction

hq(k2) = h(0)(k2)+h(1)q (k2) (2.2)

According to Ref. [1], the NLx correction for the impact factor of a heavy quark can be written
as the sum of three contributions:

h(1)q (k2) = h(1)q,m=0(k2)+
∫ 1

0
dz1

∫

d[k1]∆Fq(z1,k1,k2)

+
∫

d[k1]αSh(0)q (k1)K0(k1,k2) log
m
k1

Θmk1 ,
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with the conventionΘmk1 = θ (m−k1), where theθ -function is the well-known Heaviside step
function andk1 = |k1|. The first term on the right hand side of Eq.(2.3) is the NLx correction to the
impact factor of a massless quark, which can be expressed by using the leading order impact factor

h(0)(k) and the gluon Regge trajectoryω(1)(k) =−αS
2ε

Γ2(1+ε)
Γ(1+2ε)

(

k2

µ2

)ε
,

h(1)q,m=0(k2) = h(0)(k2)ω(1)(k2)

[

b0+
3
2
− ε

(

1
2
+K

)]

, (2.3)

with the beta functionb0 =
11
6 − nf

3Nc
andK = 67

18− π2

6 − 5nf

9Nc
.

The second term on the right hand side of Eq.(2.3) is the NLx correction induced by the heavy
quark massm, with ∆Fq(z1,k1,k2) defined in Ref. [1]. The third term comes from the introduction
of the mass scale to the leading order BFKL kernelK0(k1,k2) which is defined as

αSK0(k1,k2) =
αS

q2Γ(1− ε)µ2ε +2ω(1)(k1)δ [q] , δ [q] = π1+εδ 2+2ε(q) , (2.4)

with q= k1+k2. The first term on the right hand side of Eq.(2.4) corresponds the real component
of the BFKL kernel and the second one to the virtual corrections. In the following text we shall
analyze the second and third terms in the right hand side of Eq.(2.3).

3. The∆Fq term

The second term in the right hand side of Eq.(2.3),

∆Fq(k2) =
∫ 1

0
dz1

∫

d[k1]∆Fq(z1,k1,k2) , (3.1)

contains virtual and real corrections. The explicit expression of the integrand of Eq.(3.1) in mo-
mentum space (integrated overk1) is given in Ref. [1]. The remaining integrations, however, cannot
be performed directly in an straightforward way. It is easier to calculate theMellin transform first,
instead:

∆F̃q(γ) = Γ(1+ ε)(m2)−ε
∫

d[k2]

(

k2
2

m2

)γ−1

∆Fq(k2) , (3.2)

we get this expression

∆F̃q(γ) = Aε (m
2)ε Γ(γ + ε)Γ(1− γ −2ε)Γ2(1− γ − ε)

8Γ(2−2γ −2ε)

×
[

1+ ε
γ +2ε

+
2

1−2γ −4ε

(

1
1− γ −2ε

− 1
3−2γ −2ε

)]

. (3.3)

Then, the function∆Fq(k2) in momentum space is recovered by computing the inverse Mellin
transform:

∆Fq(k2) =
1

m2

∫

1−2ε<Reγ<1−ε

dγ
2π i

(

k2
2

m2

)−γ−ε

∆F̃q(γ) . (3.4)

This integral is a contour integral in the complex plane which converges when the integration
contour is parallel to the imaginary axis and intersects the real axis in the interval 1−2ε < Reγ <

3
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1− ε. To perform the integration in Eq.(3.4) we utilise the Cauchy residue theorem.The ratio
k2

2/m2 takes, in principal, any value between 0 and∞. However, ifk2
2/m2 < 1, we deform the

integration contour at−i∞ and at+i∞ to the right, such that the two ends meet at+∞ of the real
axis, whereas, ifk2

2/m2 > 1 we deform the integration contour at−i∞ and at+i∞ to the left, in
which case we denote the result by∆F−

q (k2).
In detail, after deforming the integration contour as described above, we have:

∆F−
q (k2) =

1
m2 ∑

γ≤1−2ε
Res

[

(

k2
2

m2

)−γ−ε

∆F̃q(γ)

]

. (3.5)

4. TheK0(k1,k2) related term

Let us now turn to the final ingredient in order to have the full NLx heavy quark impact factor
with mass corrections. For the real emission part of the BFKL kernel,K0(k1,k2) (see Eq.(2.4)), we
define the integral

Im(k2) =
∫

d[k1]
αSh(0)q (k1)

q2Γ(1− ε)µ2ε log
m
k1

Θmk1 . (4.1)

We use the following integral representation [1]:

log
a
b

Θab = lim
α→0+

∫ +i∞

−i∞

dλ
2π i

1
(λ +α)2

(a
b

)λ
≡

∫

d[λ ]
(a

b

)λ
, (4.2)

valid for a,b> 0, which allows us to write

Im(k2) =
Aε

2
lim

α→0+

∫ +i∞

−i∞

dλ
2π i

1
(λ +α)2

Γ(1+λ − ε)Γ(ε)Γ(ε −λ )
Γ(1+λ )Γ(2ε −λ )

(m2)λ (k2
2)

−1−λ+ε . (4.3)

The integrand in Eq.(4.3) vanishes for|λ | → ∞ in all directions apart from the real axis. As was
the case in the previous Section, this is a contour integral and can be calculated by a sum of residua
in a way similar to 3.5.

5. The finite result

The final NLx impact factor can be written as

hq(k2) = h(1)q (k2)|sing+hq(k2)|finite , (5.1)

with the finite part of the result after the summation being:

hq(k2)|finite = h(0)(k2,αS(k2))

{

1+
αSNc

2π

[

K − π2

6
+1−R log(4R)

− log(Z)

(

(1+2R)

√

1+R
R

+2log(Z)

)

−3
√

R

(

Li2(Z)−Li2(−Z)+ log(Z) log

(

1−Z
1+Z

))

+Li2(4R) Θmk2 +

(

1
2

log(4R)+
1
2

log2(4R)+Li2

(

1
4R

))

Θk2 m

]}

.

(5.2)

whereR= k2
2/(4m2) andZ = (

√
1+R+

√
R)−1.
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6. Numerical results and conclusions

The result in Eq.(5.2) allows us to proceed to a first numerical study of the size of the mass
corrections to the impact factor at NLx accuracy. We have adopted the running coupling scheme as
described in Refs. [14, 15] withnf = 5 flavors. At Lx accuracy, we use a fixed value for the strong
coupling constantαS = 0.2.

In Fig. 1 we plot the Lx as well as the NLx quark impact factor, the latter for two quark mass
values,m= 0 andm= 5 GeV. We see that the NLx correction to the leading order impact factor for
massless quark is positive and moderate for smallk2 where the behavior is governed by the strong
running coupling constant, but for most of the range of the plot the NLx correction is negative.
For a non-zero quark mass, in the regionk2

2/m2 < 1, the overall correction is positive and large. It
turns negative closely afterk2

2/m2 = 1, but for largerk2
2/m2, they follow the NLx massless curve as

expected. To get a better quantitative picture of the behavior of the NLx corrections in the massless
and massive case, it is useful to study the ratios of the impact factors at Lx and NLx accuracy. In
Fig. 2 (on the right) we can see that the relative size of the full NLx corrections for smallk2 (k2 < 10
GeV) vary from more than+100% down to some−20%, for similar mass valuesm= 4 GeV and
m= 5 GeV. To estimate the size of the NLx corrections induced purely by the quark mass, we plot,
Fig. 2 (on the left), the ratio between the finite parts of the NLx massive and massless quark impact
factor. The corrections are of the order of a 100% for the smallk2

2/m2 valeus and decrease ask2
2/m2

is getting larger. The cusps in the curves are solely an artefact of the choice of the factorization
scale. As expected, in the limitk2 → ∞, the massless and massive NLx impact factors coincide
such that their ratio approaches 1.
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Figure 1: Transversal momentum distributions.
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Figure 2: Transversal momentum dependence of ratios of impact factors.
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