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On multiple gluon exchange in J/ψ hadroproduction
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We consider a contribution to J/ψ hadroproduction in which the meson production is mediated

by three-gluon partonic state, with two gluons coming from the target and one gluon from the

projectile. This mechanism involves double gluon density and thus it enters at a non-leading

twist, but it is enhanced at large energies due to large double gluon density at small x. The

three-gluon contribution to J/ψ hadroproduction is calculated within perturbative QCD in the kT

factorization framework, and it is found to provide a significant correction to the standard leading

twist cross-section at the energies of the Tevatron or the LHC. The results are given as differential

pT -dependent cross-sections for J/ψ polarization components.
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1. Introduction

Understanding of charmonia and bottomonia production in high energy pp and pp̄ collisions

has been a challenge for the theory of strong interactions since first Tevatron measurements were

published of prompt J/ψ production [1]. The Tevatron data showed huge excess of the measured

cross-section over the simplest LO QCD predictions, reaching almost two orders of magnitude at

large J/ψ transverse momenta [2]. This naïve picture of the process is given by standard, color

singlet mechanism (CSM) in the collinear approximation. In this mechanism it is assumed, that

all the vector quarkonium quantum numbers and kinematic properties are generated already at the

partonic level. The production process of the heavy quark – anti quark pair is then driven by

gluons, gg → QQ̄g, and the final state gluon emission of the gluon is necessary to produce the QQ̄

pair with the quantum numbers of the vector meson. Due to presence of large scales — the quark

mass and large transverse momentum — the process may be computed within perturbative QCD.

In the collinear approximation, the emitted gluon recoil generates the transverse momentum of the

meson. As said above, however, this simple description fails badly to describe the data and needed

to be modified. In particular, the transverse momentum dependence of the collinear CSM is much

too steep.

1.1 Color octet model

Since it become clear that the collinear color singlet approximation is insufficient, a few mech-

anisms have been proposed that are able to explain reasonably well the measured heavy quarkonia

production. Currently two most successful approaches to prompt vector meson hadroproduction

are based on perturbative QCD. The first one is based on the so-called color octet mechanism

(COM), that assumes that the QQ̄ pair may be produced with quantum numbers different from

the final state meson, in particular in the color octet representation [3, 4]. Originally the COM

has been motivated by the heavy quarkonium effective theory in which higher Fock states of the

quarkonium wave function may contain an octet QQ̄ pair with some amplitude of the order of αs.

Probably, it may be also viewed as a fragmentation process of partonic QQ̄ state into the meson,

somewhat similar to c or b quark fragmentation into D or B mesons. What is crucial for effective

predictivity, in the COM one assumes existence of universal transition amplitudes from the QQ̄

pair with given quantum numbers to the mesons, provided matching of quark and meson kinematic

variables. The COM has been developed up to the next-to-leading order (NLO) within collinear

approximation [5, 6, 7], and it was shown to provide a good global fit of prompt quarkonium pro-

duction data [6], except of the quarkonium polarization [7]. The COM model does not provide a

satisfactory description of prompt J/ψ polarization as a function of transverse momentum neither

at the leading order nor at the NLO. Therefore, however sound and sophisticated, the COM may be

still incomplete.

1.2 kT factorisation approach

The other rather successful approach to vector quarkonia hadroproduction attempts to ex-

plain the wide transverse momentum distribution by taking into account the non-zero transverse

momentum of initial state gluons assuming the kT -factorization (or high energy factorization)

2



P
o
S
(
D
I
S
2
0
1
4
)
0
8
6

On multiple gluon exchange... Leszek Motyka

[8, 9, 10, 11, 12]. The most interesting quarkonia production at the Tevatron and the LHC oc-

cur in the kinematic domain where the incoming parton (gluon) momentum fractions xi are small,

typically xi < 0.01. In this region radiation in the QCD evolution may generate sizable transverse

momentum,~k, of the gluons, resulting then with a modified (broader) distribution of quarkonium

transverse momentum. In the kT -factorization approach the standard, collinear parton densities,

e.g. xg(x,µ2) for the gluon, are replaced by unintegrated parton densities, e.g. f (x,k2,µ2), with

a LL constraint xg(x,µ2) =
∫

dk2/k2 f (x,k2,µ2). The kT -factorization approach was applied to

prompt quarkonia production at the LO, assuming both color singlet and color octet scenarios.

The emerging picture is quite encouraging, but not fully clear yet. A recent description of the

recent LHC data within the kT -factorization CSM approach was quite successful, including even

meson polarization [11], but the older description of the Tevatron data required also the color octet

contributions [9]. Therefore, in this moment the kT -factorizing approach also suffers from some

deficiencies in providing the consistent global picture of prompt quarkonia production.

2. The triple gluon correction

2.1 Motivation

As discussed in the previous section, the existing approaches to vector quarkonia hadropro-

duction, although reproducing well many features of the data, do not provide complete and fully

satisfactory global description. Thus it may be still necessary to include yet other production mech-

anism. One of the potentially important corrections to the standard CSM and COM contributions

may be driven by multiple scattering effects. At the lowest order (assuming matching of quark and

meson quantum numbers) the correction is driven by a partonic amplitude of three-gluon fusion

into heavy quark-antiquark pair, g+ 2g → QQ̄ [13]. Since one needs to drag two glouns out of

one hadron, this correction employs the double gluon distribution and enters, therefore, beyond

the leading twist. It implies a power suppression of this correction w.r.t. the standard, two-gluon

cross-sections. The double gluon distribution, however, at small gluon x, provides a large enhance-

ment factor ∼ xg(x,µ2), that may well reach about 20 in the relevant kinematic domain. The first

estimates suggested that this multiple scattering effect may be even the dominant contribution of

the total vector quarkonia cross-section, leaving only little space for the color octet contributions

[13]. Moreover, the multiple scattering effects should be also important in vector meson produc-

tions in high energy collisions with nuclei, where the nucleus mass number provides an additional

enhancement factor of multiple gluon distributions. Therefore we performed a detailed estimate

of this rescattering (or triple gluon) correction for the Tevatron and the LHC energies beyond the

collinear, leading logarithmic accuracy of Ref. [13].

2.2 The framework

The calculations were performed within the kT -factorization approach. The relevant diagram

for an inclusive process, AB → XY J/ψ is shown in Fig. 1a. The total amplitude includes am-

plitudes of this diagram and the ‘upside-down’ diagram in which the two gluons originate from

projectile B. When squaring the amplitude, one finds diagrams with topology shown in Fig. 1b,

with four and two gluons in the t-channel, and (not shown) diagrams with three gluon t-channel
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Figure 1: Diagrams relevant for the triple-gluon mechanism of heavy vector meson hadroproduction: a) the

amplitude and b) the dominant topology in the cross-section.

states originating from both A and B. The latter ‘interference’ diagrams may be neglected as the

three gluon state evolution is known to have no energy enhancement, contrary to the two and four

gluon states that drive the contributions shown in Fig. 1b. After performing the phase space inte-

grals over remnants X and Y in this contribution one recovers double and single unintegrated gluon

distributions originating from A and B respectively. The three gluon-fusion amplitude into the me-

son (the middle part of the diagram shown in Fig. 1a) is described in terms of a known impact

factor, ΦJ/ψ [14], with J/ψ polarization vectors in the helicity frame. The proper normalization

of the amplitudes is obtained by matching to collinear cross-sections of single and double parton

scattering. We assume factorization of the double gluon density and factorization of the impact

parameter dependence. With these assumptions the final formula for the triple gluon contribution

to J/ψ production takes the form:

d2σpp→J/ψX

dY d p2
T

= N
R2

sh
σeff

∫

d2kd2l
α3

s f (β , l2,µ) f (α ,k2,µ) f (α ,(p−k− l)2,µ)

[k2 l2 (p−k− l)2]2

×
∣

∣ΦJ/ψ(α ,β ;k,p−k− l, l;ε)
∣

∣

2
+ (α ↔ β , pA ↔ pB) (2.1)

where α and β are meson longitudinal momentum fractions of the projectiles, rapidity Y = 1/2log(α/β ),

p is the meson transverse momentum, pT = |p|, ε is the meson polarization, k, l and p− k− l are

the gluons transverse momenta, and we combine numerical constants, color factors etc. into a

normalization constant N .

Note the emergence of σeff, the effective parameter describing parton transverse density and

probability of multiple scattering. It appears as a result of forcing two partons from one hadron

to be in the same position in the transverse space. Since, in the double gluon density the values

of gluon x are different, we used off-diagonal gluon densities and included the Shuvaev factor, Rsh

[15].
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Figure 2: Differential cross sections
dσpp→J/ψX

d pT

∣

∣

∣

|Y |<0.6
×Br(J/ψ → µ+µ−) at the Tevatron,

√
s = 1.96 TeV:

a) the triple gluon correction (this paper) and its break-down into polarized components b) the reference:

plot taken from arXiv:1105.0820 [hep-ph][6]: CDF data [18] and LO / NLO fits of the CSM and COM [6].

2.3 Results

In the numerical evaluations unintegrated gluon densities were used derived from the CT10

collinear gluon density [16] using Kimber-Martin-Ryskin approach [17] with the hard scale given

by the transverse meson mass, µ2 = M2
J/ψ + p2

T . The running strong coupling constants of a gluon

with virtuality k2 was evaluated at the scale µ2 = M2
c +k2, with Mc = MJ/ψ/2. We set the multiple

scattering parameter value σeff = 15 mb, in accordance with Refs. [19, 20].

In Fig. 2a the results of numerical evaluation of the triple gluon correction to the differential

meson production cross section
dσpp→J/ψX

d pT

∣

∣

∣

|Y |<0.6
× Br(J/ψ → µ+µ−) (including the branching

ratio of the meson decay to muons) are shown for the Tevatron energy (
√

s = 1.96 GeV). For a

reference, we show in Fig. 2b a plot taken from Ref. [6], in which results of CSM and of COM fits

are presented at LO and NLO accuracy together with CDF data. From the comparison of Fig. 2a

and Fig. 2b it is clear, that the triple gluon correction is similar in the magnitude and shape to the

standard CSM contribution at the NLO. In more detail, the triple-gluon contribution is found to be

larger than the CSM contribution in the whole range of transverse momentum and it reaches about

20 – 25% of the measured cross-section at low transverse momenta. At larger transverse momenta

this contributions the relative importance of this correction diminishes and already at pT > 10 GeV,

this contribution is negligible.

In Fig. 2a we also show polarized components of the triple gluon correction in the helicity

frame. Clearly, at low transverse momentum the longitudinal and total transverse cross-sections

are similar, and with increasing pT the longitudinal component becomes dominant, saturating the

total cross-section.

The results for the LHC exhibit very similar pattern, as the results for the Tevatron, so we do

not show them here, leaving the broader and more detailed presentation to the forthcoming paper

[21].
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3. Conclusions

We estimated corrections to prompt J/ψ production at the Tevatron and the LHC coming from

a triple gluon incoming partonic state. They are found to be sizable at small transverse momenta,

up to 20 – 25 % of the measured cross-section and negligible at large transverse momenta. The J/ψ

polarization from this mechanism varies with pT , from negligible polarization at small momenta to

longitudinal polarization at large pT . The correction is large enough to affect the fits to the existing,

precise data on J/ψ hadroproduction. The results may be also relevant for J/ψ production in

proton–nucleus collisions, where the multiple gluon exchanges are enhanced by the nucleus mass

number.
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