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1. Introduction

High energy scattering processes are treated usually in eikonal approximation. For the scatter-
ing of a dilute projectile on dense target, the high density of the target makes it possible to perform a
semi-classical approximation that amounts to replace the target by an intense classical background
field. The Color Glass Condensate (CGC, see [1] and references therein) is the effective theory that
is used to study such scatterings within the eikonal and semi-classical approximations. In the CGC,
one can calculate the observables for such processes in a weak coupling expansion and resum high-
energy leading and next-to-leading logarithms. Corrections suppressed by inverse powers of the
energy of the collision are systematically neglected within the eikonal limit. We study such power
suppressed corrections to the CGC, namely next-to-eikonal contributions due to finite length of the
target [2]. For the production of a gluon with momentum k = (k+,k−,k) off a target of light-cone
thickness L+, the eikonal expansion amounts to assume that

√
k+/L+ is larger than any available

transverse momentum scale, like the transverse momentum of the produced gluon, k, or the satura-
tion scale of the target. Next-to-eikonal corrections are then suppressed as L+/k+ compared to the
strict eikonal terms.

2. Eikonal expansion of the retarded gluon propagator in a background field

One of the main building blocks for dense-dilute scattering processes at high energy is the
retarded gluon propagator in a classical background field. A highly boosted left-moving target can
be described by a classical gluon background field A −

a (x+,x). Only the (−) component of this field
is enhanced by a Lorentz gamma factor, so that the other components are negligible in comparison.
Moreover, due to time dilation, the x− dependence of the field can be neglected. In the presence
of such a background field, it is natural to work in the light-cone gauge A+

a = 0. Linearizing the
Yang-Mills equations around the background field A −

a (x+,x), one finds the equation satisfied by
the gluon propagators in that background[

gµν

(
δab�x−2ig

(
A −(x+,x) ·T

)
ab

∂x−
)
−δab∂xµ ∂xν

]
Gνρ(x,y)bc

= i gµ
ρ

δac δ
(4)(x−y) , for µ 6=+ . (2.1)

For our purposes, we only need the retarded propagator. Since the background field A −
a (x+,x)

is independent of x−, it is convenient to introduce the one dimensional Fourier transform of the
retarded gluon propagator

G(µν)
R (x,y)ab =

∫ dp+

2π
e−ip+(x−−y−) 1

2(p++iε)
G

(µν)
p+ (x;y)ab . (2.2)

In principle one can write all the components of the retarded gluon propagator but we only need
the (i−) component for the calculations of the observables that we are interested in. The (i−)
component of the retarded gluon propagator is given in terms of the background scalar propagator
as

G i−
k+ (x;y)ab =

i
k++iε

∂yi G ab
k+ (x;y). (2.3)
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Note that the notation (x)≡ (x+,x) is introduced for simplicity. The background scalar propagator,
G ab

k+ (x;y) satisfies the scalar Green’s equation:[
δ

ab
(

i∂x+ +
∂ 2

x
2(k++iε)

)
+g
(
A −(x) ·T

)ab
]
G bc

k+ (x;y) = iδ
ac

δ
(3)(x−y) , (2.4)

whose solution can be formally written as a path integral

G ab
k+ (x;y) = θ(x+−y+)

∫ z(x+)=x

z(y+)=y
Dz(z+) exp

[
ik+

2

∫ x+

y+
dz+ ż2(z+)

]
U ab

(
x+,y+,

[
z(z+)

])
(2.5)

with the Wilson line

U ab
(

x+,y+,
[
z(z+)

])
= P+ exp

{
ig
∫ x+

y+
dz+ T ·A −

(
z+,z(z+)

)}ab

(2.6)

following the Brownian trajectory z(z+). In the last expression P+ indicates the ordering of color
generators T a along x+. The path integral is actually defined through discretization as

G ab
k+ (x;y) = lim

N→+∞
θ(x+−y+)

∫ (N−1

∏
n=1

d2zn

)(
−i(k++iε)N
2π(x+−y+)

)N

×exp
[

i(k++iε)N
2(x+−y+)

N−1

∑
n=0

(zn+1−zn)
2
]
U ab(x+,y+,{zn}) , (2.7)

with N being the number of discretization steps, z0 = y and zN = x. Here, U ab(x+,y+,{zn}) is the
discretized Wilson line in the adjoint representation, defined as

U ab(x+,y+,{zn}) = P+

{
N−1

∏
n=0

exp
[

ig
(x+−y+)

N

(
A −(z+n ,zn) ·T

)]}ab

, (2.8)

where
z+n = y++

n
N
(x+−y+) . (2.9)

In the large k+ limit, one can basically expand the Brownian trajectory followed by the Wilson line
around a classical path :

zn = zcl
n +un , (2.10)

where zcl
n = y + n

N (x− y). The retarded background propagator, G ab
k+ (x;y), is proportional to

exp
[
(x+−y+)

N igT ·A −(z+n ,zcl
n +un)

]
. Thus, in the large k+ limit, one should Taylor expand the

gauge link, A −, around un = 0 at each discretization step and take the product of the Taylor ex-
pansion of all links and collect the terms according to the power of un. After this expansion, one
should re-expand the result around the fixed initial transverse position since in the limit zcl− y is
small at each step. All in all, the background propagator reads∫

d2x e−ik·x G ab
k+ (x;y) = θ(x+−y+) e−ik·y e−ik−(x+−y+)

{
U (x+,y+,y)

+
(x+−y+)

k+
ki U i

(1)(x
+,y+,y) + i

(x+−y+)
2k+

U(2)(x
+,y+,y)

}ab

, (2.11)
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where the explicit forms of the first corrections to strict eikonal limit are

U i,ab
(1) (x+,y+,y) =

∫ x+

y+
dz+
(

z+−y+

x+−y+

){
U (x+,z+,y)

×
[
igT ·∂yiA−(z+,y)

]
U (z+,y+,y)

}ab

(2.12)

and

U ab
(2)(x

+,y+,y) =
∫ x+

y+
dz+

(
z+−y+

x+−y+

){
U (x+,z+,y)

[
igT ·∂ 2

y A−(z+,y)
]
U (z+,y+,y)

}ab

+2
∫ x+

y+
dz+

∫ z+

y+
dw+

(
w+−y+

x+−y+

){
U (x+,z+,y)

[
igT ·∂yiA−(z+,y)

]
×U (z+,w+,y)

[
igT ·∂yiA−(w+,y)

]
U (w+,y+,y)

}ab

. (2.13)

3. Single inclusive gluon production in pA collisions beyond the eikonal
approximation

In the CGC formalism, a highly boosted left-moving nucleus is usually described by a classical
gluon shockwave A µ

a (x)= δ µ−δ (x+)A −
a (x) in the light-cone gauge A+

a = 0. That field has indeed
a vanishing longitudinal width and no x− dependence in the limit of infinite boost.

Consider instead a background field

A µ
a (x) = δ

µ−A −
a (x+,x) (3.1)

with a finite support along the x+ direction, from x+ = 0 to x+ = L+. In the case of a large nucleus,
this should be the dominant finite-boost correction with respect to the usual gluon shockwave.
On the other hand, a highly boosted right-moving proton, considered as dilute, is described by a
classical color current

jµ
a (x) = δ

µ− j+a (x) (3.2)

with zero width along x−: j+a (x)∝ δ (x−). Let us consider a proton-nucleus collision with a particu-
lar impact parameter B and choose the center of the nucleus as the reference point for the transverse
plane, so that a generic point x in the transverse plane is at a distance |x−B| from the center of
the proton and at a distance |x| from the center of the nucleus.Then, the color current j+a (x) can
be written as j+a (x) = δ (x−) U ab(x+,−∞,x)ρb(x−B) where ρb is the transverse density of color
charges inside the proton before it reaches the nucleus, and U ab(x+,−∞,x) is the Wilson line im-
plementing the color precession of these color charges in the background field A −

a (x+,x) of the
nucleus. One can define the Fourier transform of the color charge density

ρ
a(y−B) =

∫ d2q
(2π)2 eiq·(y−B)

ρ̃(q) (3.3)

and the gluon-nucleus reduced amplitude, M
ab
λ (k,q), as

M a
λ
(k,B) =

∫ d2q
(2π)2 e−iq·B M

ab
λ (k,q) ρ̃

b(q) , (3.4)
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where the gluon production amplitude is M a
λ
(k,B) is given as

M a
λ
(k,B) = ε

i∗(2k+) lim
x+→∞

∫
d2x

∫
dx−eik·x

∫
d4y Gi−

R (x,y)ab j+b (y). (3.5)

The cross section for single inclusive gluon production can be written as

k+
dσ

dk+ d2k
=
∫ d2q

(2π)2 ϕp(q)
q2

4
1

N2
c−1 ∑

λ phys.

〈
M

ab
λ (k,q)† M

ab
λ (k,q)

〉
A
. (3.6)

where ϕp(q) is the unintegrated gluon distribution. By using eqn. 2.3 in the definition of the gluon
production amplitude and using the expanded expression for the background gluon propagator one
write the reduced gluon-nucleus amplitude at next-to-eikonal accuracy as

M
ab
λ (k,q) = iε i∗

∫
d2ye−i(k−q)·y

{
2
[

ki

k2 −
qi

q2

]
U (L+,0;y)+

L+

k+

[
δ

i j−2
qi

q2 k j
]
U j

(1)(L
+,0;y)

−i
L+

k+
qi

q2 U(2)(L
+,0;y)

}ab

. (3.7)

The square of the reduced amplitude reads

1
N2

c−1 ∑
λ phys.

〈
M

ab
λ (k,q)† M

ab
λ (k,q)

〉
A
=

1
k2 q2

∫
d2b

∫
d2r e−i(k−q)·r

×

{
4(k−q)2SA(r,b)+2

L+

k+

[
(k−q)2 k j +k2(k j−q j)

][
O j

(1)(r,b)+O j
(1)(−r,b)

]

+2i
L+

k+
k · (k−q)

[
O(2)(r,b)−O(2)(−r,b)

]}
, (3.8)

where the operators SA(r,b), O j
(1)(r,b) and O(2)(r,b) are defined as

SA(r,b) =
1

N2
c −1

〈
tr
[
U †
(

L+,0;b− r
2

)
U
(

L+,0;b+
r
2

)]〉
A
, (3.9)

O j
(1)(r,b) =

1
N2

c −1

〈
tr
[
U †
(

L+,0;b− r
2

)
U j

(1)

(
L+,0;b+

r
2

)]〉
A
, (3.10)

O(2)(r,b) =
1

N2
c −1

〈
tr
[
U †
(

L+,0;b− r
2

)
U(2)

(
L+,0;b+

r
2

)]〉
A
. (3.11)

The combinations
[
O j

(1)(r,b) +O j
(1)(−r,b)

]
and

[
O(2)(r,b)−O(2)(−r,b)

]
that are appearing

in the cross section vanish upon integration over b due to rotational symmetry. Thus, the next-to-
eikonal contributions vanish for single inclusive gluon cross section and we recover the well-known
kt factorisation formula [3], [4].
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4. The cross section for the polarized gluon production in unpolarized pA collisions

Next-to-eikonal corrections to single inclusive gluon cross-section vanish due to the symmetry
properties of the next-to-eikonal operators upon integration over the impact parameter. In practice,
one can also study the next-to-eikonal corrections to the cross-section for the polarized gluon pro-
duction in unpolarized pA collisions.

There are typically two mechanisms leading to polarized hadron production in unpolarized pA
collisions. One possibility is that a polarized quark or gluon is produced, which then fragments
in a standard way to a polarized hadron. The other possibility is that the polarization is induced
during the fragmentation process. That second possibility has been studied in the CGC framework
in the case of transversely polarized hyperon production [5]. By contrast, the focus on the present
section is on the first type of mechanism. For simplicity, let us restrict ourselves to the study of
the asymmetry in the light-front helicity of the produced gluon, assuming that this asymmetry is
preserved at the hadron level by fragmentation.

The calculation of that asymmetry is calculated by taking the difference between the λ =+1
and λ =−1 contributions of the helicity λ =±1 of the produced gluon, i.e.

k+
dσ+

dk+ d2k
− k+

dσ−

dk+ d2k
=
∫ d2q

(2π)2 ϕp(q)
q2

4
1

N2
c−1 ∑

λ phys.
λ

〈
M

ab
λ (k,q)† M

ab
λ (k,q)

〉
A
.

(4.1)
The difference between the two light-front helicity states can be calculated by using the following
identity

∑
λ phys.

λ ε
i
λ

ε
∗ j
λ

=−i ε
i j (4.2)

with ε i j being an antisymmetric matrix. Then the cross-section for the polarized gluon production
reads

k+
dσ+

dk+ d2k
− k+

dσ−

dk+ d2k
=

L+

k+

∫ d2q
(2π)2 ϕp(q) q2

∫
d2b

∫
d2r e−i(k−q)·r

×

{
− i

[(
ki

k2−
qi

q2

)
ε

i j−2

(
ε il ki ql

)
k2 q2 k j

]
O j

(1)(r,b)−
(ε i j ki q j)

k2 q2 O(2)(r,b)

}
. (4.3)

Thus, for the polarized gluon production cross-section, the strict eikonal term vanishes and next-
to-eikonal terms become the leading contribution.

5. Conclusions

We presented a systematic eikonal expansion of the retarded gluon propagator in a background
field which is one of the most crucial building blocks of the high energy dense-dilute scattering pro-
cesses and also medium induced gluon radiation. We apply this method to single inclusive gluon
cross section in order to study the corrections to the CGC beyond the eikonal limit. The strict
eikonal term provides the usual kt factorisation formula, whereas the first next-to-eikonal correc-
tions vanish for this particular observable. On the other hand, we also applied the same method to
calculate the cross section for the polarized gluon production in unpolarized pA collisions. For this
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observable, we have seen that the strict eikonal terms vanish leaving the next-to-eikonal corrections
as the leading contribution.
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